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The ultraviolet cutoff (the lattice cutoff) normalized Schwinger functions converge as the ultraviolet cutoff
(the lattice cutoff) is removed. The limit Schwinger functions are the moments of the normalized physical
measure. As a consequence of the lattice approximation, the Lee-Yang theorem and various correlation

inequalities hold for the A3 field theory in a periodic box.

1. INTRODUCTION AND MAIN RESULTS

This paper studies the R¢§ quantum field theory in a
periodic box. The main progress on the A¢} model has
been the proof of the existence [G1]' and semibounded-
ness [GJ1]? of the spatially cutoff Hamiltonian and the
proof of the convergence of the ultraviolet cutoff [F1]?
and the lattice cutoff [P1]! unnormalized Schwinger
functions with the free boundary condition as the cutoffs
are removed. It also has been proven that for small
coupling constant (depending on the spatial cutoff) the
normalized Schwinger functions exist for the free
boundary condition [F1, P1). ¥ The main purpose of this
paper is to demonstrate that the ultraviolet cutoff (the
lattice cutoff) normalized Schwinger functions in a
periodic box converge as the ultraviolet cutoff (in re-
spect to the lattice cutoff) is removed. To do this, it is
desirable to show that the corresponding partition func-
tion does not vanish for A< R*. It then follows that the
Lee—Yang theorem and the various correlation inequali-
ties hold for the given model as a consequence of the
lattice approximation of the boson field theory
[GRS1, L1, S1].°~" Then one may develop the A¢j field
theory parallel to the P(¢), model. The next step in
the program might involve the use of methods developed
for P(), [GJS1,2P® to take the infinite volume limit of
the periodic box and verify the Wightman axioms. (See
the remark at the end of this section.)

We will be concerned solely with the Euclidean ap-
proach to the A¢} theory for e R* in a periodic box.
Let ACR? be a box of volume |A | =T1%, L*? centered
at the origin. We define A, ; to be the lattice approxi-
mation of the Laplacian with the periodic boundary con-
dition on A and the lattice spacing parameter 6. Let
Ty, be the torus obtained by identifying the lattices of
the opposite sides of A and let T, =T, 4., Throughout
this paper we fix the box A and supress A in the nota-
tion. Let dg) be the Gaussian measure of mean zero and
covariance (- A; +mi)"!, where m, is the free mass of
the boson under consideration. Let ¢,(f), fc §(T4), be
the corresponding free fields and let ¢, ,(f), fe S(T4),
be the double cutoff (the ultraviolet cutoff function k and
the lattice cutoff ) free fields. Let Z, ; and
Sesfir-es f.) be the corresponding partition function
and unnormalized Schwinger functions given by

Zn,ﬁ = f dax,ﬁy

S::‘ﬁ(fl’-'-,fn :f¢a(fi)"'¢a(fn)d‘7x,m (1. 1)
where
dq,,s = expl- V(x, 6)]dq} (1.2
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is the triple cutoff (including the space cutoff A) unnor-
malized intraction measure for the A¢} model. See Sec.
2 for the detailed definitions. The corresponding nor-
malized Schwinger functions are defined by

sx,B(fi; L] yfn) = (Zx,ﬁ)-1 S G(fi! ’fn

The ultraviolet cutoff Schwinger functions and the lat-
tice cutoff Schwinger functions are defined by

Sx(fi, ’fn x, —o(fl: sfn
Sa(fi, 7fn) S k=1, 5(fh !.fn
respectively. The above expressions are well defined

by virtue of momentum cutoffs « and 8. We now give the
main results in this paper.

(1.3)

(1.4)

Theovem 1.1: (a) Let f; < §(T,). There exists a con-
stant K, (2, A, m3) independent of x and a Schwartz space
norm |+] such that

n
st(fi’ LIRS 7fn) I Sn! ,l—_li lle eXp(Ki)-
(b) For all Ac R*, the limits
s(fi: oo ’fn) :1"1_1111 Sk(fia e !fn)

exist and obey the above bounds.

(c) There exists a unique measure dg on §’(T,) such
that

S(frs e sfd= [ 0(F)*** ¢(f) dg.
Theovem 1.2: (a) Let f;c §(T,). Then for all Ac R*

Se(Fis v esfad =S(Fys -+, fa) as 60,

(b) (Lee—Yang theorem for the A¢} field theory.) Let
f=0and let

F(u) = [ expluo(ndg.
Then F(uf)#0 if Re p =0.

(c) (Correlation inequalities for the A¢} field theory.)
The GKS inequalities ([S1],7 Theorem VIII. 15), the
FKG inequalities ([S1],” Theorem VIII. 18), and the
Lebowitz inequalities ([S1],7 Theorem IX.16 and [L1]f)
hold for the A¢4 field theory with the periodic boundary
conditions.

The reader is referred to [F1)],°% [GJ1],? [GRs1],5
[P1],* and [S1] for further background materials, nota-
tion, and references. Throughout this paper we will
adopt these notation and results.

Remark: After completing this paper I have learned
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that both Magnen and Seneor!® and Feldman and
Osterwalder!! have independently shown the existence
of the infinite volume limit of the A¢§ model for suffi-
ciently small A and sufficiently large bare mass m,.

2. NOTATION, DEFINITIONS, AND BASIC ESTIMATES

In this section we introduce more detailed notation
and definitions. At the end of section we collect techni-
cal lemmas which will be used in the next section. For
technical reasons we assume that each side of A has
integral length: L' ¢ Z*, i=0,1,2. The same results
in more general cases hold by a straightforward modi-
fication of the method in the above case. Let &, be the
Laplacian on the torus T, and let d¢° be the Gaussian
measure on §’(T,) of mean zero and covariance
(- &, +md)t. We note that

(—a,+md)x—y) = 6-11;)—3 [ gk 2 expl— ik, (x - p)dk
b D p(ky)? expl-iky - G- 9],
Al EAE 23

where &, is the lattice point in Z* close to &,
27 27 2m
Zi= (L““) Zx (L‘” zx (L‘”) z

and p(k)*= (k¥* + m3). The free theory with periodic
boundary condition on A is given on the path space
L%($'(T,),dq"). The Euclidean fields are the linear co-
ordinate functions on §4(Z,):

(@) ={q,f) for all ge Sg(T,) and f € §(T,)-
For he L*(Z}) we write
h(x) = [ h(k,) expliky * %) dk.

We now introduce the ultraviolet cutoff free field by

(2.2)

2.3)

1 N
Pa,xx) = TAT A Ga(y) Rplx - ) dy. (2.4)
We assume that the cutoff function « is of the form as
in [GJ1].2

From now on we suppress A and m} in the notation.
The partition function and unnormalized Schwinger func-
tions of the double cutoff interaction theory are just the
mass and moments of the unnormalized measure dg,:

Z, = fd‘;m

(2.5)
S(fys -~ oS = f o)+ o(f,) 47
The measure is given by [F1, GJ1?
dq, = expl - V(K)}dg’,
V{K) = Vy(k) — 5A20m?: ¢%: + E,(x) + E5(K),
(2.6)

Vilk) =X ¢,
Ey ) =% [ V) dg®, Eyk)=-1 [ Vi()?dd’,
Smli=—4%+6+(2m)° [ B(ky+ ky+ ky)
4
XTI p(ka, ) k(ka, ;) dk;.
i=2

: means Wick ordering with respect to dg° and
2.7

Here :

:¢ﬁ:=f,,:¢:: (x) dx.
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We next consider the lattice approximation with the
periodic boundary condition on A. We assume that the
the lattice spacing parameter 8 has the form 5=2"" for
some ne Z*. From the assumption on A it follows that

(2.8)
We consider the finite Fourier transformation from
I}(A) to I3(Z3, ;) where Ay={nblndc A,nc Z% and

Z3 s=1kalkac 25, B c (- 1/5,7/5]}. Then the
finite Fourier transformation is defined by

L /5=2"'" for some m'P e z*,

Rl = (8%/1A1) ? 1(nb) exp (- ik, * nb). (2.9)
nﬁ—Aﬁ

Similarly we define the inverse transformation by

R(nd) = (—2%)—3 /; h(k,) exp(ik, * nb) dk,

where [, means that the range of integration is
k'Y e (- 7/8,7/8). We define the Laplacian 4, ; on
T,,s; Where T, ; is the discrete torus, by

(- 84,6/ 00) = 02160 - 25 flu'5)).

n=n’| =

Then the image of (- &, 4 +m?) on 1*(Z3 ;) is the multi-
plication by

Wg(Fp)? = 672 (6 -22; cos(bkj\”)) + mi. (2.10)

i=0

The free fields ¢4(f) = 0 Znse 2, 05(n) f(n0) are Gaussian
random variables with mean zero and covariance
(- &a,s+md)t. Let dg) be the measure corresponding
to the above covariance and let dg, be the unnormalized
interacting measure given by

dgs = expl~ V(8)]dq},

where V(5) is the lattice cutoff interaction defined by
replacing : ¢;: by

Pl =00 2

n6< Ay

(2.11)

05 () (2.12)
and 8m? by 6m?, where dm? is defined by replacing &

by &, in the definition of Om? in [P1}.* The lattice cut-
off partition function and unnormalized Schwinger func-
tions are given by Z;= [dg, and

S (f1s oo esfu) = f bs(Fy) * * * 6(f) dgs-

Similarly we define the triple cutoff unnormalized inter-
acting measure by

(2.13)

dq,,s = expl- V{x, 6)]dq;, (2.14)
where V{x, 5) is defined by replacing p,(k,)™! by
wo(ka) k(R ) in the definition of V(5), where

B, =26 sin(6%'P/2), i=0,1,2. (2.15)

The corresponding partition function and Schwinger
functions are defined by

ZK,G = f dal(,67
Sr‘:‘ﬁ(fi’ ... ’fn): f q)ﬁ(fi) M ¢6(fn) d"_in,ﬁ'

In the remainder of this section we collect some
technical lemmas which we will use in the next section.

(2.16)

Lemma 2.1; (a) For each kc R®

(ks = wky), k(ky, ) ~x(ks) as 0.
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() po(kp) ™t < (@/2) p(ky)?, if [KP] <7/8, 0<is2,
©) [k(®/nE)) <o), if L'V =1, 0si<2.

Proof: (a) and (c). These follow from an elementary
observation. (b) This follows from the following in-
equality [GRS1,? (IvV.11)]:

1-cosy= (2/m)y? if ye[-7,7]. = (2.17)
Lemma 2.2: Let fe §(T,). Then for | |<s7/d

| 7.(k2) | <OQ1) p(@)2.

Proof: From the definitions in (2.9) and (2. 10) we
have that
luolea) fse) [<OMOB/ |AD T o)~ 2
nsE< Ay {n=n'l=
We use the method used in proving [P1}! Lemma 2.2 to
bound the above by O(1). The lemma follows from
Lemma 2.1 (c). =

In the next section we will divide the periodic box A
into union of cubes. To prevent double counts of lattice
points on the boundary of cubes, we consider half open
cubes of the form

ADA:{xlx(i)e [a(f)’ b(i)), la(i) _ b(i) l =d, 0<i 52}.

(2.18)
We write
&A)G(kA) = (EB/IAI) 27 exp(— ik, *nd)
LIS
Fo,alkn) = flo a2 py ) +1]1 (2.19)

po (ki) =522 - 2 cos(Bk{) |+ md, 0<is<2,

where |A| is the volume of A. We also introduce a dis-
crete version of derivatives with respect to &,
variables:

2 N
DK: l'{) DX,(:)’ m= (m(O)’ m(i), m(2))
3=l
(DA.Of)(kA) = (Lw’/27r)[f(k(°’ +TY/L(0), k(i), k(Z))
_f(k(o) -7 L(O)’ k(i)’ k(2))],

and D, ; and D, , are defined by a similar manner. The
following is the result corresponding to [P1],4 Lemma
Lemma 2. 3.

Lemma 2.4: (a) For (¥ |<7n/d
| DF ps(ky) 2| <O() p(R)2-1m .

(b) We assume that |A|<1 and the center of A is at
the origin:

[DR(Ka)s(ka) | <O A3 R, L (Ry).

(c) Let k be the momentum cutoff function defined
in (2. 4):

| DT (s, 5) | < O) min{(a'P)™|i=0,1, 2} x,,

where X, is the characteristic function of the support
of K(kA,G)’

(2.20)

Proof: The proof follows by replacing D™ in the proof
of [P1],* Lemma 2.3 by D7 in (2. 20) and adapting a
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Fn'5)|.
1

method similar to that of [P1],4 Lemma 2.3. For the
detailed proof we refer the reader to [P1].‘m

3. CONVERGENCE OF THE SCHWINGER FUNCTIONS

We now turn to prove Theorem 1.1 and Theorem 1. 2
by employing a method similar to that developed in
[GJ1, F1, P1]. 2~ The notation G may refer, depending
on context, to the topological graph G, the function
G(g) on §’(T,), or the kernel G(k;) [F1].? Following
[F1],® we introduce two deferent estimates on [ Gdg, .
Given y> 2a > 0, we define

le

1,7,a — SUp Sup ”PﬁCM’[G' ”u-s
% C
3.1)
| G|y, =sup sup sup | PAC M?| DI G| | 4 s.
P C D

P, C, D,J,M, and || are “operators” that modify the
graph G and its kernel [F1].? In our case D is monomial
of discrete differential operator in the variables {k,},
that is, at most fourth order in {&{”, k{1, £{¥'} for each
fixed I, With above notations we obtain that

”q)(f) 1.1.ot:K1 ” (" AA+m:(]'))-U2”f “LZE |f|r:

“ b5 () ” 1,7, = K3 “ (—ap,6t m%) et/ ” 2= Ifﬁ lr°

Notice that | fi, and ||, are finite for fe §(T,). We
use the method of [GJ1}J for decomposing big graphs
into little graphs to obtain

(3.2)

” ﬁ‘ o(f) “1.1.a s"!.ﬁi ]filw
= = (3.3)

It 4ot

For the detailed derivation of the above estimates we
refer to [F1].3

n
1,7a SH n ‘fi,b]r-
i=1

Theorem 1.1 and Theorem 1.2 will follow as corol-
laries of the following results:

Theorem 3.1, Suppose Gy is a graph having N exter-
nal legs and G, is a graph having N(A} external legs in
ACA. Let k; and «, be the ultraviolet cutoff functions
of the form in (2.4) and let a> 0 be a given constant.
Then, for §= 0 there is a constant K, (A, vy, ¥,, @, a) in-
dependent of «,, k,, and 6 such that

| [ G1Gyexp(-a: 9L 42) dd,,s

<NVII OVl T PR ey

2750 exP[KjA (A)]:

where A(A) is the volume of the set of points within a
distance one from A.

Corollary 3. 2:

[/ GG, exp(¢s (A]dg,, |
SNNHA N(A)H(A) II Gil

1,740 ” G, “ 2 7pa exP[KzA (A)]-

Theorem 3.3: Let [IGlly, 5, <= and let | f;1, <« for
some 0< a < o, (@, to be chosen as in [F1J). Then, for
6=0, [ Gexplu ®5()1dq,,s converges uniformly in 6> 0
as k —1 and obeys the bound of Corollary 3.2. The
limit is continuous in f and analytic in p.
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Theorem 3.4: The limit
lim lim [ exp(- a: 6%, 4) g4

K1 Ky 1
=1lim Lim [ exp(-a: ¢}, 42 dqy,,s
Ko~ i Ki‘ 1
exists.

Theovem 3.5: Z=1im,.1Z,> 0.

The proofs of Theorems 3.1-3,5 are delayed to later
in this paper, We now prove Theorem 1.1 and Theorem
1,2,

Pyoof of Theorem 1.1: (a) We set G;=1 [G,=117_,¢6(f)},
G,=1, a=0, and 6=0 in Theorem 3.1 to obtain

z, < explK,A(D)],

" (3.4
S0y -+ ofd < nt T 11| explEAM)).
Since
(3.5)

Z= 1'11{12,, and S™(fis e« fw) = 1in£xs:“(f,, ceesSd)
K ice

exist by Theorem 3.3 for the case in which G=1 [and
G,=TIT_,6(f)], w=0 and 6=0, it follows that there
exists an ultraviolet cutoff function «, such that, for
K> Ky,

Z,232>0 (3.6)
by Theorem 3.5 and (3.5). The theorem follows from
(3. 4) and (3. 6).

(b) This follows from (3.5) and (3. 6).

(e) This follows from Theorem 3.5 and the argument
in the proof of [F1],? Theorem 1(d). ®

Proof of Theorem 1.2: (a) From (3. 3) and Theorem
3.3 we obtain that

Se,6{f1s oS = Ss(fs -+ -,f) uniformly in 8.

Here we have also used Theorem 3.5. Since S, ; =S,
as 0 —0 by the virtue of momentum cutoff k, the
theorem follows by the 3¢ argument.

(3.7

(b) The theorem follows from the Lee—Yang theorem
for the lattice cutoff theory [GS1, S1], **7 Hurwitz’s
theorem, and the fact that

S explpp(N]dg=1imz;* [ expluds(Nldgs.  (3.8)
The proof of (3.8) follows from Theorem 3.3, Theorem
3.5, and a method similar to that used in the proof of
Theorem 1. 2(a).

(c) Since the corresponding inequalities hold for the
lattice cutoff theory [GS1, 1], %7 the theorem follows
from Theorem 1.2 (a)—(b}. m

In the rest of this section we prove Theorems 3.1—
3.5. The main method of the proof rests on the so-
called “inductive construction” developed in {GJ1].? Us-
ing the construction, we will follow the main steps used
in [F1, P1}** with a modification which is necessary for
the given case. From now on we assume that the al-
lowed cubes have the form

A=27A,+2"nd, jeZ, ncZ? (3.9
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where &,={x|x*? € [- 4, 1)}. From the assumption on
the size of b it follows that the length of each side of
cubes in a multiple of 6. We next consider the ultra-
violet cutoff function «(%,,,) in more detail. We define
A, u, and U—the maximum lower cutoff, the minimum
upper cutoff, and the maximum upper cutoff of a group
of legs

r=max{2,af), u=min{g?}, v=max{f"}, (.10
, i1 i1

where 1, (ki1},0) =1(ki]), 6/ Bi”) = (R3]} o/ o) is the
momentum cutoff function in the ith space—time direc-
tion for the leg I. We note that the above definition is
independent of A and 6. Because of the lattice cutoff 3,
we may assume that

84 <2u/8 for all i and 1. (3.11)

Let
Suppilg, o (k(f)A,ﬁ) nl- /8, 7/8}

=~ B ~ aiR)Ulajls, Biis].
We define 6-dependent maximum lower cutoff, minimum
upper cutoff, and maximum upper cutoff of a group of
legs by

: i B :
Np=max {2, i}, w=min{fi3}, Up=max{pi}
i1 . iy

(3.12)
From Lemma 2. 1(c) and (2. 17) it is easy to check that
(2 |+1] 2] + 1) <0Q1) for [P |<n/6.
Hence, under the assumption (3.11) we obtain that
[MA | <0(1), |u/us|* <0(1), |U/U,|:1<0(1)
' (3.13)

uniformly in 5, Following the main steps in [F1, P1]}, **
we now summarize our proofs.

Sketch of the proof of Theorem 3.1:1In [P1}* we have
proved the corresponding theorem with the free bound-
ary condition in the case in which a=0. Therefore, we
will only point out where we must pay special attention
to the periodic boundary condition and to the case of a
> (. Since a>0 and since {|: ¢ 4:ll, < const uniformly in
k and 5, the form exp(-a: ¢} ;3 introduces no difficul-
ties in the inductive construction. Hence we only con-
sider the case of a=0 for the simplification of our dis-
cussion. We follow the same steps used in the proof
{p1],* Theorem 3. 1.

Step 1: The inductive expansion: By Lernma 2.1 we
may employ the expansion of [GJ1J] to obtain

‘ f Gchdax,s l SZG; 1(6)9

where I(G) is the elementary integration labeled by the
Feynman graph G.

Step 2: The combinatoric estimates: The combinatoric
bounds given in [F1],? Lemma 4.1 [with notations in
(3.10)] apply equally well to our case, To show this, we
note that

d{a,a”) <4d{a, AN da’, A", (3.14)
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where d{a, A% =1+7(a,4°) and ¥(4, A’} is the distance
from the center of A to the center of A’ in the forus 7,
and so a result similar to that in [GJ1],? p. 338, holds
in our case (if necessary, a redefinition of ¢ in [GJ1]
does not essentially effect the combinatoric estimates).
Also the results in [GJ1],? Sec. 3.3, and [GJ1],? Lemma
4.2, holds in our case. Using the combinatoric esti-
mates, we have that

2 I(G) ssupc(6) | 1(6)],
G G

where ¢(G) is the combinatoric coefficients given above.

Step 3: Localization factors: We note that for
7961 L4/,

2 (H\ 2 )
(n6)2$% (%—”—\) [2-Zcos (32(% n‘”ﬁ)],
0

(Hy 2 X
(%Tr—) [2—2005 (—Lz—(”r, nmc)] exp(ik, * nd)

:Dii exP(ikA’ nﬁ)y

where D,,; is the discrete differential operator in
T,,s- We use the above results, the periodic property
of &y, (period 27/5) and a method similar to that of
[P1].* We then isolate the distance factors to obtain

(e l<( 1 (@a)ym]IG)

Step 4: Estimate of 1(G): We assert that 1(G) is
bounded by a product of factors given by those of [F1],3
Lemma 5.1 [with notations in (3, 10)]. In [P1)* the above
assertion has followed as a consequence of [P1],
Lemmas 2, 1—2, 3, the corresponding estimate of (3. 13)
and the periodic property of F, , (%) (see the Appendix
of [P1} for the detailed discussion). Similary the above
assertion follows as a consequence of Lemmas
2.1-2.3, (3.13), and the periodic property of Fy (k).

The theorem now follows from the assertion and the
method used in proving [F1],? Theorem 2, from [F1],?
Lemmab5.1.®

Proof of Corollary 3.2. and Theovem 3.3: The proof
follow from the methods used in the proof of [F1},?
Corollary 3.2, and [F1],? Theorem 3, by using [F1],?
Theorem 3,2, and from the method used in proving
Theorem 3.1, For more detailed discussion we refer
the reader to [F1].%n

Proof of Theovem 3.4: Using Theorem 3.1 and using
a method similar to that in the proof of [F1),® Theorem
3, we conclude that [exp(-a: ¢>£1:) dq,., converges uni-
formly in k; as #, 1. Since lim, .q lim, -
J exp(~ a: % 1) dg,, exists as consequences of Theorem
3.1, the theorem follows by the 3¢ argument. ®

To show Theorem 3.5, we need technical lemmas.

Lemma 3. 6: There exists a constant m such that,
for mgy>m, Z(n}) >0, where Z(mb)is the partition func-
tion corresponding to the free boson mass m.

Proof of Lemma 3. 6: We construct a sequence of
momentum cutoffs O=x; Sk, <-++ <y, =x. We then
arrive at

|z 1]<lz,- 2, ]
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H=3
SE Z; j;)’ d8| f Go.fdak(s)'

=0 € T
s ?up ” Gs, s ” 1,7 a exP[K5A(A)]’
3

where each graph G, ; contains one P vertex, and at

most 16 C vertices, G is a finite index set, and K; is
a constant independent of m}. The last inequality fol-

lows from the method used in proving [F1)],® Theorem
3. Since each kernel of G, ; contains (k,, m8)

= (¥4 + m})"! factors, it is easy to show that
“ Go, i ”1,7’.a —~0 as mf—~,
The theorem follows from the above result. m

We will show Theorem 3.5 by first assuming Z(m2)
=0 for some m? > 0 and then making a contradiction to
Lemma 3.6, We first introduce more notation. We
write

(3.15)

where dg°(m?) is the free measure with covariance
(= Az +md)! and

VK, 8, m}) =X 1k 5 'md

dg,, s (m3, md) = expl- Vik, 6, m)]dql(m}),

+ By(k, 8, m}) + E5(x, 5, m3)

(3. 16)
where : :,2 is the Wick ordering with respect to the
measure dq¥(m]), and E,(k, 8, m}), E;(k, 5, m}), and

&m? s(m?3) are obtained by replacing w3 by m{ in the
definitions of E,(k, 5), Ej(k,8), and dm? ,. We also write

- %ﬂﬁmi’ﬁ(m%) :¢.2<,5 my

in,xz'b(a) m%! m%) = f exp(— a: 4)21,6 : mi) d‘é‘xz,ﬁ(””’g) nl%)’
— 2 2
Zni,xg (d, Wl%, m%) - Zni,xaz,b:o(a’ my, m2)5
2 2
Zs(a: ’Wl‘f, m%) = ZK1=K2=1,5(a7 my, mZ): (3- 17)

Z(a, Wl%, mg) =27 =1(a, m%; WL%).

K1=I<2
We first verify the following technical lemma.

Lemma 3.7: There are constants (k) and 8,(k) such
that

Vik, m}) = V(k, m3) + by (k) : pE: w} + by (k)
and
|b,()| + |by(k) | < o for all «.

Proof: We first consider the change in Wick poly-
nomials. It is not hard to check that

DPl il = Gyl + 60C (i, mY) 1 B
+3(8C, (mf, m)P [A],
POk = 1 9k 12+ OC,(mF, mY) A,

(3.18)

where
ch(m%’ 7”%) = Ck(nl%) - Cx(m%)s
C (m% =[1/(2n)%] f 2k, +mD) VPR,

If we expand V{k,m,) by using (3. 18), it then easy to
check that

Vi, my) = V{x, m,)
=by(6) : §F 1,2 + b5 (6) + [Ey(e, my) — By (&, my)

= PN2Om(my) 8C (s, my) || A |, (3.19)
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where 1b4(x)}| + |bj(x) | < const uniformly in k., We now
assert that the second term of (2.19) is bounded uni-
formly in k. The proof follows by the method used in the
mass renormalization cancellation (and its straight-
forward modification), We leave the detailed proof to
the reader. Combining (3. 19) and the assertion, we
have proved the lemma. ®

Proof of Theovem 1.6: (i) In the case of by{x) =0 in
Lemma 3.7: We assume that Z(m3) = 0 for some .
Since exp(- a: ¢2 :,,,g) < const(k), we conclude that

iiﬂz“t"‘z(a’ mi, mi)—~0 (3. 20)

by the assumption. Hence by Theorem 3. 4 it follows that
that

lim lim Z,, . (a, m}, m3) = Z(a, m}, m3) = 0. (3.21)

k=1 ky=1 142
Since Z({a, m3, m3) =lim;. , Z;(a, »3, m3) by a method
similar to that used in proving Theorem 1.2(a), and
since [Sec. 3 of SP1],1?

C31Z,(a, mi, mf) = Zs(0, m, mf + 2a),
by a consequence of the lattice approximation, where

C,= ] exp(— a: ¢?:)dg)> 1 uniformly in 6, it follows that

C-1Zz(a, m}, m3) = Z(0, m3, m} + 2a) =0, (3.22)

where C=1lim,.,C;. We use Theorem 3.4 and Lemma
3.7 to conclude that
(3.23)

where d=exp[- b,(1)] and b, =b,(1). We again use (3.22)
and a method similar to that in proving (3.21) to obtain

Z(by, m3, mi+2a)=0 and so Z(0, m} +2a, m} +2a)=0 for
any a= 0 by (3.23). This contradicts Lemma 3, 6.

Z(0, mk + 2a, m} + 2a) =dZ(b,, m}, m} + 2a),

(ii) In the case of b,(x) <0 in Lemma 3. 7: Replacing
a by a- b, in (3.21) and following the method used
above, we obtain

0=C1Z(a- by, md, md) = Z(- b, m}, m} + 2a)

=d,Z(0, m} + 2a, m} + 2a).
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Hence it follows that Z(0, m?% + 2a, m3 + 2a) = 0. This
contradicts Lemma 3.6. ¥
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New Jacobian ¢ functions and the evaluation of lattice

sums
I. J. Zucker

Department of Physics. University of Surrey, Guildford, Surrey, England

(Received 19 May 1975)

The properties of some infinite series are discussed. They are used to evaluate some two- and higher-

dimensional lattice sums.

I. INTRODUCTION

In recent work initiated by Glasser® on the exact eval-
uation of lattice sums much use has been made®? of the
Jacobian # functions of zero argument. They are given
below in their infinite series representations as present-
ed by Whittaker and Watson®:

8,(0, g) = 9222("'1/2’222411“(1 r@R gttt

(1a)
65(0,9) =0, =20 g™ =1+ 2¢ +2¢* +2¢° - - -, (1b)
0,(0,q)=6,=22(=1)"g*=1-2q +2¢*-2¢°---,  (lc)
6(0, ¢)= 6{ =2 (= 1)"(2n + 1)g " /"
0
=24 41~ 3¢% +54%...). (1d)

To evaluate lattice sums, the latter have been expressed
as Mellin transforms of products and powers of the
above series. Then using identities established by
Jacobi, ® these products and powers are expressed as a
single series. This decomposes a multiple lattice sum
into a product of simple sums. The method is illustrated

below. Consider S; =3 0,0, (Mm% +1%)"5,
Let

C()M,[r]= [," ¢ fat; (2)
then

S =MJ[6%(g) - 1] with g=e"t, (3)
By using the identity®

G-1=42 Zr:,ﬂ):‘ig (gt (g
it is elementary to show that

Sy =4Ly(s)Ly(s). (5)

L, and L, are Dirichlet L functions, ® better known in
their notation and series representation now given,
namely

L) = £s) = (n+1)%, s > 1,
0

w (6)
Ly(s)=B(s)=2. (- 1)"(2n+1)"%, s > 0.
0
In the evaluation of lattice sums much use is made of
many beautiful identities which exist among (1la—1d).
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These relations can be divided roughly into two kinds:
(a) additive relations, e.g.,

6, + 6, =264(g%), (7a)

8, — 6, =28,(¢*), (Tb)

8; = 63(g*) + 6,(¢"); (7c)
(b) multiplicative relations, e.g.,

8,0, = 6(¢%), (8a)

26,0, = 62(g* /%), (8b)

The additive relations are easily deduced from the se-
ries (1a—1d). Multiplicative identities are more readily
established from another remarkable way of represent-
ing the 0 functions, namely by infinite products. With
the notation

Qo:ff(l - %, Q1=§?<1 +g*),

(9

Qz___;l;(l + gy, Qszf?(l—qz"'l),
the following relations are given by Whittaker and
Watson™:

8, =20"*QQ3, (10a)

8= QuQ3, (10b)

8, = QQ3, (10¢)

6/ =24""Q}. (10d)
It is elementary to establish that

Q@3 = Q(g* /2), QxQz:Ql(ql /2),

Q:Q:=5(g%), Q@ =Q,(¢?, (11)
whence

@190, = 1. (12)

It is simple to find (8a) and (8b) from these results and
the famous identity 6; = 6,8,6, follows immediately.

ll. ANEW g SERIES

From (8a) and (8b) simple g series for 8,6, and 6,6,
may be found since ¢ series for 6% and € are known. A
series for 6,6, was required by Glasser' to evaluate a
certain lattice sum and this did not appear to be known.
But Glasser® was able to evaluate his sum by means of
number theoretic techniques, and the writer, ® working
backwards from Glasser’s result, was able to find the
q series for 6,6,, It was also found by a direct approach
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invelving manipulation of ¢ series.® Subsequently, it was
pointed out by Joyce10 that the ¢ series for 8,8, could be
found in Tannery and Molk, !! who indicate that the series
can be established by forming the Fourier series for
6,(z, q)/65(z, q) and putting z = 0. The series is

1/4 q" i
62 s = Zq E ( 1)"(1 +q4n*1 1 +q4n¢3>'

n=0
Having a ¢ series for 6,6, and looking at relation (8a)
and (8b) it seems natural to ask the following question.
Is there a g series of which 6,6, is the square? The an-
swer is in the affirmative, but the series cannot be ex-
pressed in terms of (1la—1d), and it would seem legiti-
mate to name this series ;. It may be found as follows.
From (10a)—(10d)

(13)

6,6,= 24" *QQ{Q} = 2¢' *Q}/Q}. (14)
Now there is a famous identity of Gauss'? namely
Qu/Qs=1+qg+g*+gb+... +gmm2/2 ., (15)

Put - ¢° for ¢ in this expression. Now, since Q,(~¢?
=Q,(g%) and Q4(- ¢° = Q,(g?, the following holds:

Qu(gY)/Qx(¢P) =1-g*—g® +q'* +¢* .. (16)
Therefore, from (14) and (16) we may write
20,(¢°) 84(¢°) = 44* *Q}(¢%) /Q3(4®)
=[24""4Qy(q%)/ Q24D P = &, (17)
where
95:2611/4(1-qz—q6+q12+q20--.) (18)

In {17) the indices of g are n{z + 1) and the sign of the
terms alternate in paivs. The series 85 does not appear
to have been considered by Jacobi, and it would seem
that it should be added to (1a)—(1d) as another basic g
series. No additive relations involving 85 have yet been
found, but the following multiplicative results have been
deduced

6,65 = 292(‘12) 94(‘14),
8,650,(q*) = 26;(¢%).

Knowing that even powers of 85 can be expressed in
powers of 6,6, enables the following sums to be evaluat-
ed, Namely:

(19a)
(19b)

2 Z, D {@m -2+ @n-3)2 o 1 (20)
provided there are an even number of terms up to 8 only
in the sum. For example, we evaluate the two-dimen-
sional sum

% T D (2m = 3% + @ 2P = M 624l (1)
From (17) and (13)
1) 2n+1 /2 - 1) 6n+1/2
Ms[9§/4] [Z; 1+)3€.+z -( 1_{_;]8”1 ]
= ZS{LM(S) + Lgb(s) ]’ (22)
where
Le(8)=1+3%=5"°_T ..., Lg(s)=1=-3"-5"+7"..
(23)

2190 J. Math. Phys., Vol. 16, No. 11, November 1975

are Dirichlet L series of period 8.°
gives the curious result

When s =1, this

Z)Z( D™ [(2m - $)2 + (20 - £)2]

-% -

=[r+2m(1 +v2)]/V2

The four-, six-, and eight-dimensional forms of (20)
may be similarly evaluated. (19b) also enables us to
find a three-dimensional result, namely,

ZEZ( D™ 4m? + 4n® + 2(p - 3)%]°
—M[ez(q*)ez(q )]
=MJ8{(¢})]=2""6(2s - 1) (25)

For s =3 this equals v2 while for s =1 it is equal to 7.

(29)

111. OTHER Q SERIES

It will be observed that, among all the relations in-
volving the 6 functions discussed above, the powers of
g involved are of the form 2" only. This prompted us to
explore g series in which this was not the case. It
seemed fruitful to consider

8, ___.zzq(n-l/S)z:zzq(n-Z/S)z’ (26)

6, =2 Z(-— 1)7q -t 192 _ _o (= 1)ng =2 132 27
Additive relations have been found among these series.

They are

96(’19) = 0, — 05(¢°), (28a)
6:(¢°) = 8,(q”) = 64, (28Db)
85 — 67 = 264(g%), (28¢)

but as yet no multiplicative results have been found.
This limits the number of lattice sums which can be
evaluated. Thus only two-dimensional sums have been
found in the following cases:

f)i)[(Sm — 12+ (3n- 12" =i M,

~90 =0

[63(4%)]

65 — 26,6,(q°) + 65(¢°)].

il

M

The evaluation of M[8,6,(¢°) — 1] has been given else-
where® by the writer. The final result for the above sum
may be written

[(1=32%)L,L,~ L,L,,]/2, (29)

where L; and L,, are further Dirichlet L series of period
3 and 12 given by

Ly=1-2"44"_5%... L,=1-5"=-7"+11"....
(30)
Similarly it can be shown
2 (=)™ [(3m = 12+ (3n - 1]
=-[(1=3)L,L,— (1 +2")L,Ly1,1/2, (31)
where L,=1-2°+3°-4"°..., For s=1 the value is
—71n(4+2V3)/9.
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It would seem likely from the foregoing that other ¢
series might be of use in evaluating lattice sums.
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Self-adjoint operators, derivations and automorphisms on C*-

algebras

Heide Narnhofer*

Bell Laboratories, Murray Hill, New Jersey 07974
(Received 8 May 1975)

We discuss how the concept of C*-algebras with a strongly continuous one parameter group of
automorphisms can be realized, if the automorphism is implemented by an unbounded operator.

1. INTRODUCTION

A system of infinitely many particles is often de-
scribed by a suitable chosen C*-algebra 4 and the
states over it. Dynamics is supposed to be defined by
a one parameter automorphism group 7,. /2 For many
results one even strengthens this assumption by the
claim that this group is strongly continuous, i.e.,

limllT,A —All=0, ¥ AcA. (1.1)
t~0

For instance this continuity can be used to construct
operators analytic under time automorphism. Usually
this form of continuity is not essential but can be
weakened by the assumption that for a given sfate and
its corresponding representation

s—lti_rrol(W(T,A)—n(A)):O, v AcA. (1.2)

Nevertheless this restriction is representation depen-
dent and it is an open question whether it is reasonable
to assume that it holds in all representations. At least
one cannot prove it referring to unitary operators im-
plementing the automorphism, because their existence
would also imply weak operator continuity in A for fixed
{. But for noninvariant states time automorphism will
usually not be continuous in this way, which can be
easily demonstrated by a counterexample.

Assume w is space translation invariant, but not time
translation invariant, Assume further that it is a factor
state. Let o, be the automorphism group of space
translation. Then

w —limn(o, A) = w(A)I,.

Assume 7, can be enlarged as automorphism on 7(A)".
We know 7,0,A=0,7,A. Therefore,

1.3)

(1.4a)
(1.4b)

wlimmo,7, A) = T, limn(o, A) =w(A) I,
=w(t,A)I,

which leads to a contradiction. Therefore, 7,(-) cannot
be continuous in the weak operator topology.

Another argument why it should be nice if we could
assume strong continuity is the following: Similar to the
relation between self-adjoint operators and groups of
strongly continuous unitary operators we can find a
connection between automorphism groups and deriva-
tions, ® and as perturbation theory is easier to handle
for self-adjoint operators than for unitary operators it
might be easier to consider the effect of additional
interactions on the level of derivation theory rather than
on the level of the theory on automorphism groups.

We ask how the assumption of strong continuity is
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realized for known physical models: It is satisfied for
spin systems with short range interaction,? it is satis-
fied for continuous free Fermi systems, where A4 is
built up by creation and annihilation operators. It is
not satisfied for continuous free Bose systems with 4
constructed by the Weyl operators.® For interacting
continuous systems it is not even proven whether time
automorphisms exist (and in fact it is our hope that
derivations might be helpful in this respect).

We turn now to the case of one particle moving in an
external field. If we construct our C*-algebra by
expliga), exp(ipBh), the free time automorphism is well
defined but not strongly continuous. If we add an exter-
nal field, then usually time evolution will not be repre-
sentable as time automorphism but will lead to a new
C*-algebra.®

It is the aim of this paper to find models of C*-
algebras, subalgebras of 8(/4), where /4 is some
Hilbert space, dense in strong operator topology in
A(H), such that time automorphism is continuous in the
topology introduced by the norm. So we should get some
feeling how restrictive these assumptions are. We will
not consider the problem how to construct a quasilocal
algebra such that at least the antomorphisms implied
by the local Hamiltonians are strongly continuous
(though to find such an algebra was the motivation of
this paper). In fact it will turn out that a simple imbed-
ding A{A}C A{A’) for A C A’ does not hold and therefore
the usual construction is not possible. So it looks quite
probable that, though the concept of strongly continuous
automorphism groups works for finite systems, it may
fail in general for the quasilocal algebra of statistical
mechanics.

2. TIME AUTOMORPHISMS AND DERIVATIONS

We want to summarize here some results about the
relation between autcmorphism groups and derivations:

Definition: A strongly continuous automorphism
group is the representation of R in the set of automor-
phisms over a C*-algebra A satisfying

T A) =7, (4), lIr,All=lIAl,

Limli7,(4) - Al =0. @.1)

Definition: A derivation d is a map of a dense subset
D(6) CA into A4 satisfying

5(AB)=5(A)- B +A8(B).

It is symmetric if A D(5) implies A'< D(3) and 8(A")
= 5(A) . 1t is closable if A, —~0, A, < D(d} and

(2.2)
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N6(A,—A, )l < efor n, m >n, implies 6(4,)—~ 0. It is
maximal, if R(6 +1)=R(6 ~1)=4.

Lemma®: If R(6+£1)=4 and if 16A +Al = IlAll, then
R(6+¢)=4A for ¢ >0. This lemma expresses the stabili-
ty of deficiency which is proven in Ref. 7 [Kato, IV
5.17] for general Banach spaces (e.g., this is true for
bounded and therefore inner derivations and therefore
also for derivations that can be approximated by inner
derivations).

Lemwma: f R(6 +1)=R(6-1)=4, then
T, :lni_n_}(l —t8/n)" (2.3)

exists for { € R and defines a strongly continuous auto-
morphism group. (If this expression makes sense,

T, =exptd. ) The proof corresponds to the proof for self-
adjoint operators (Kato, I1X 1.2).

Lemma: If 7, is a strongly continuous automorphism
group, then a maximal derivation is defined by

1

T-s4= f exp(~ )7, Adt. (2.4)
0
It is equal to
8(4) =nlim 2 =4 2.5)

if this limit exists, and the automorphism group defined
by & coincides with 7. Again the proofs can be adopted
from Ref. 7 (IX Secs. 1.2, 3).

3. THE C*-ALGEBRA

We start with a Hilbert space 4 and a self-adjoint
operator H on //. We want to find an algebra /4, closed
in norm topology, dense in strong operator topology,
such that 4 is stable under time evolution 7, defined by
H and such that 7, acts strongly continuous on A.

Evidently A(//) satisfies our requirements only if H
is bounded. The biggest algebra A is defined in the
following way: Take = to be the set of all bounded
operators A such that 84 is bounded. A € «, so is A" and
AB and 7,A. Therefore, A =~ satisfies all our claims.
Nevertheless, A is defined in a slightly abstract way so
that its properties cannot be discussed so nicely.

We will restrict our interest to another algebra. Let
{E,} be the spectral family of H. Define

A=YE,BHEN I (3.1)

This algebra is well defined being obtained as an induc-
tive limit. It is invariant under time automorphism and
this automorphism is strongly continuous.

Remark: Other possibilities would be

AI: \;E)\B(H)E)u W,
742: \;/EAB(H)E)\U{H}’

(3.2)

Evidently 4 A, CA,<A where it is an open problem
whether 4,=4.

Our definition of 4 depends very much on H and
therefore we want to give an equivalent definition where
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it is easier to see what happens if H is changed. Define
the two norms

= ; I
Hally,, 500 A+,

=1

Al ,=e if 3y with Ay ¢ D(H)

= sup [(H-i)Aypll otherwise (3.3)
we,L/

nen=1

and define « ={A, l|All <o, |Ally , <, I All, , <<o}.
Since IIAII,,, 1=lA"lly 5, « is stable under conjugation.
Since

lABIl, < lAILIBI, ,,

taBll, ;< IBIILAM, |, (3.4)
it is also stable under taking the product. It is dense
in the strong operator topology, because =z > \;EXBE,‘.
But it is also stable under time automorphism and

sA-nlim A=A g AlvAca.

Therefore the algebra /7 :;/T satisfies our claims. We
have to prove that both definitions lead to the same
algebra: Since = O E, 8E, =454, We want to show
that / D4. Take A €. Then we know that 3¢ with

(Ihpll =1)

c > IHEZ Ayl = ME Ayll. (3.9)
This implies

IExAyll<e/x ¥ 3, llpll=1. (3.6)
With the same argument for A" we obtain

IAEl< ¢/A. (3.7
Therefore,

ACY(E\B7ABE)) = Y E\BE,.

The advantage of the second definition is the following:
In the first definition we had to refer to the spectral
family which depends greatly on the self-adjoint opera-
tor. But now we used H only to show that A and A" are
bounded operators from /4 on D(H), D(H) equipped with
the norm which makes it complete. But if therefore
another operator H has D(H) as domain, where H is
self-adjoint too, then not only 7, but also 7, will be
strongly continuous on 4.

There is another candidate for an algebra satisfying
our requirements. Thatis C =(C,w1, where (, is the
algebra of compact operators. Evidently it is invariant
for any (unitary implemented) automorphism. The
problem is whether the automorphism acts as strongly
continuous representation of R.

Assume first that our self-adjoint operator H has a
discrete spectrum, i.e., the spectrum consists only of
eigenvalues of finite multiplicity. Then E, BE, is a
compact operator for all B, soU ,E, BE,C(,. On the
other hand, we know that ( is the smallest subalgebra
of A(H), closed in norm, such that the identical repre-
Sentation is irreducible (Ref. 8, IV 1). Therefore 4=C.

Evidently ( satisfies our claims also for every
bounded operator H, though in this case it is really a
subalgebra of 4 = /(/4). The problem remains what
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happens if H is unbounded and has an essential spec-
trum. We can restrict ourselves on those C which can
be written

C =2 fom| FXF| (3.8)
where the F, are one~dimensional projection operators
and the sum runs over a finite number of indices, Since
these operators are already norm dense in (. For every
¢ we can find projection operators G, with I1G, ~ F lls¢f
such that IC ~C'll <€ with C' =3}, f,,| G){(G,! and with the
property that 3x with G, <E, ¥n.

Evidently C’ belongs to = and therefore C belongs to
A. But again ( will now be a subalgebra of 4 because
Jx, such that E, AE, is the algebra of bounded operators
over an infinite-dimensional Hilbert space VX >2,. One
should mention another useful property of C. It is not
only stable under any time automorphism and this
automorphism acts strongly continuously but there are
also only two irreducible representations, namely the
trivial one [7(C +X1)=21] and the identical one. ¥

4. PERTURBATION OF THE DERIVATION

Similarly for self-adjoint operators, we want to add
to a maximal derivation a symmetric one and ask for a
theorem that guarantees that the new derivation is again
maximal (or its closure is maximal). We are led by the
theorem of Ref. 7 (V, 4) which tells us: Let K be a
self-adjoint operator and V be a symmetric operator
satisfying

Ivyll<alipll +ollEpll v pe DK), b <1, (4.1)

then K + V is self-adjoint on D(K). If b=1, then K+ V is
essentially self-adjoint on D(K).

There are two ways to translate this theorem for
derivations: Either adapt the proof so that the result
looks formally the same, or ask what this condition
implies on the corresponding derivations so that the
result is the same in its contents. The first way is
trivial or does not work.

Theovem: Let 6, be a maximal derivation and 5, be
a symmetric derivation satisfying

llo, All < allAll +5116,All ¥ A< D(5,), (4.2)

and lla(8, +6,)A +All= || All. Then 8,5, is a maximal
derivation on D(3,).

The proof is exactly the same as for operators, using
the Banach space structure. For the case b=1 the
Hilbert space structure became important for the proof
so that it fails in our case and the problem remains
open, The theorem covers especially all bounded
derivations 6, (corresponding to bounded V).

b <1,

This theorem can be generalized in some Sense.

Theovem. Let 6, again be a maximal derivation and
5, be a symmetric derivation with D(5,) CD(5,). Then
there exists an a, such that for all a, lal <a,,

R(5, +ab,+1) is dense in 4 and therefore 6; +ad, de-
fines an automorphism group.

The proof is given for general Banach spaces in
Ref. 9. We try now to follow the other way and to find
a general characterization of what properties deriva-
tions have corresponding to operators that are Kato-
bounded. First we make the following observation:
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Lemma: Kato boundedness of the operators does not
imply Kato boundedness of the derivations. One can
easily construct a counter example. Take as Hilbert
space #/, the Fock space of fermions (Sec. 5), and let
K be the kinetic energy, V some nice two-body interac-
tion, and N the number operator. Then the derivations
with respect to K and to K +aN are defined on all crea-
tion and annihilation operators a(f) and a'( ) with f
sufficiently smooth (though they do not belong to our
constructed algebra /). But this does not hold for the
derivation with respect to V though we can assume V
to be bounded with respect to K +«N. (This in fact
demonstrates that we really had to choose our algebra
A in this way.) We can only state the following:

Lemma: Let ||Vl < allyll + bl Kyll. Then define 8,
+ @b, on A. The closure 6, + @b, is a maximal derivation
for | ! <b™! and strongly continuous in & for all A e A.
Sois (6, +ab,+y)" for all Ac 4. 8, +ad, corresponds
to K + aV, which defines an automorphism with A being
invariant.

For operators we know that Kato boundedness is not
a necessary condition that the perturbed Hamiltonian
exist as a self-adjoint operator. In fact, from the
physical point of view one need not insist that K +aV is
essentially self-adjoint on D(K) N D(V) to make good
sense. We can define our new Hamiltonian, e.g., by
the Friedrichs extension or by the Trotter formula.
Especially the last method is also applicable for auto-
morphism groups.

Theovem (Trotter): If D(5,) < D(5,) and if further
R(56,%1), R(8,+1) and R(8, +5,+1) are dense in A, then
the automorphism defined by 0, + 0, can be obtained as
norm limit

T,(A):n];'i‘IE(T”/W Tars) A (4.3)
For self-adjoint operators this limit can exist, even
when the assumptions of the theorem are not satisfied
(see, e.g., Refs. 10, 11). Similarly, we have the
result:

Theorewm. If T, and 7, are strongly continuous auto-
morphisms and if

Tt(A) =n lni_'Ig(Tu /n Tat /ﬂ)n(A)

exists for a dense set of / in a compact neighborhood of
0 for all A, then 7, can be enlarged on all / and is an
automorphism group.

Contrary to the operator case, here the assumptions
can be rather restrictive., Throughout the previous
theorems we did not assume that 9, itself defines an
automorphism. For all usual potentials in physics, the
operators we add are not only symmetric but essential-
ly self-adjoint on the restricted domain. But this does
not imply that this domain is invariant under exp(:V?),
an assumption which was essential in our definition of

A.

On the other hand, if we restrict our interest on C,
then we know that  is stable under 7, and 7, and that
they act strongly continuously, so that the input is the
same as for operators.
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5. PHYSICAL EXAMPLES

Our considerations have been quite general, starting
with a Hilbert space and a C*-algebra with an irreduc-
ible representation in A(/4). We want now to ask how
A really looks like in physical problems.

A. One particle

If one treats the one particle problem in the frame-
work of C*-algebras, one usually starts with the C*-
algebra A, generated by {exp(ipa), exp(igf)].** For this
algebra free time evolution exists as automorphism
group, but it is not strongly continuous. The next short-
coming, which is worse, is the fact that for the particle
interacting with an external field (with only few and
rather unphysical exceptions of the field) the algebra is
not stable under time evolution.

Our algebra 4 (3.1) is defined with respect to K= - A,
the free time evolution. Then we have a strongly con-
tinuous time automorphism group for all H =K + V with
Vix)e [*~ [”. Comparing 4 with 4, we observe that
neither exp(ip @) nor exp(igf) belong to 4. On the other
hand, 8(P?-p% e A but & A,, so that there is no simple
relation between A and 4.

If #/=/*) so that we stay in a finite region, then K
has a purely discrete spectrum no matter which bound-~
ary conditions we choose (K of course self-adjoint), so
that 4 =C and in fact does not depend on the boundary
condition.

B. Fock space

Take as Hilbert space /=@ /4, H, being the space of
n particles, satisfying some symmetry properties. For
our purpose it does not make any difference if the
particles have to stay in some finite region A with
specified boundary conditions or can be spread over all
of R*. Since all physical Hamiltonians considered in
statistical mechanics are number preserving, we can
write H=} H, with H the Hamiltonian of » particles
acting in #/,. Then we can construct our algebra A, with
the corresponding time automorphism. Again it is
stable under adding a potential as long as H, = K, +V,
is self-adjoint on D(X,). We might define 4, = 4,. But
A, is too small because it does not permit a transition
from an n-particle subspace to an m-particle subspace.
Especially, it does not contain creation and annihilation
operators, not even in its weak closure.

H being the sum of commuting self-adjoint operators
is self-adjoint, too. Therefore it seems wiser to start
already with H and construct 4, by using (3.1)., But now
we are led to another shortcoming.

For a two-body interaction, the best statement one
can hope for is

NV, el < a,llpll +o,1l K, pll (5.1)

where g, — < for n—«. Therefore, D(H)#+ D(K) and the
algebra will depend on the interaction which is not satis-
fying. We have to look for a smaller algebra. Choose

;4:7;\; E\wRE\y , (6.2)

where E,y belongs to the spectral family of H, =3 H,.
But for this algebra our previous considerations apply.
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Take A € YE,y8E,y~ 1. Then 0A=0,A and 7,A=7,,A.
So we have a strongly continuous time automorphism
group for the free particles as well as for the interact-
ing particles. We should remark that it is inessential
how g, depends on n, so that the theory covers Coulomb
interaction for fermions as well as for bosons.

As for the one particle case there is no simple rela-
tion to the algebra one has usually in mind, namely in
the fermion case the one built up by creation and anni-
hilation operators (here free time automorphism acts
strongly continuously, but for the automorphism corre-
sponding to an interaction this need not be, at least the
derivations 6, and 6, do not have a common domain) and
in the Bose case the one constructed by exp[ia(f)] and
exp[ia'(f)]. Here in fact even the free time evolution is
represented as automorphism, which is not strongly
continuous. So # cannot be larger than these algebras.
On the other hand, P,(F a(fa'(g)) P, does not construct
the whole algebra A, on the one particle space, sc that
we do not have an inclusion in the other way either.

With stronger assumptions on our potential—but still
realistic ones—we can give another description of our
algebra A4.

Consider the automorphism group v, implemented by
the number operator

v,(A) = exp(i Nt) A exp(-iNY). (5.3)

Evidently this automorphism group is strongly continu-
ous for A e A(#,). Furthermore, it commutes with
K and H. Therefore we can consider 7, implemented by
K +aN and

Ty=Vigy Ty (5.4)
But now we can restrict our interest to potentials
satisfying

NVl <bliyll +cll(K +aN)pll, (5.5)
so that we can take

A=VFBR~1 (5.6)

where F, belongs to the spectral family of K +aN.

One of the most important examples in physics is the
Coulomb system. Here we know from the results of
Dyson and Lenard, '3 that (5) holds if we have fermions
and an equal amount of positive and negative charge.
But within this restriction on the Hilbert space we see
that our algebra has a well-defined time automorphism.
If, on the other hand, we take the full Fock space
H=H,®4H,, H, being the Fock space belonging to the
different kinds of particles, so that the system need not
be neutral or if we have gravitation, i.e., only attrac-
tion, then

V<K +aN7/3 (5.7
or for a neutral Bose system
V<K +aN5%/3, (5.8)

Still N7/3(N®/3) defines an automorphism group com-
muting with 7. Now F, has to belong to the spectral
family of K +aN"/ 3K +aN®'3),

We ask once more whether the considerations become
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simpler for finite regions. In fact, K has a pure point
spectrum so that 4 =C and

VEBEY 1= VE, BBy 1=5 FBFTL. (5.9)

Though K + V need not have a pure discrete spectrum,
it defines a strongly continuous automorphism group on
A. In fact, K +V +aN still has a pure discrete spec-
trum, if (5.5) holds.

To summarize our observation, we have seen that
the concept of a C*-algebra with a strongly continuous
one parameter automorphism group is quite satisfying
for a great class of physical problems. Of course we
have to be careful in our choice of the algebra A. It need
not be unique and it is possible to choose it in a way
such that it depends quite heavily on the automorphism
we have in mind. On the other hand, we are also able to
find one which fits for every automorphism.

Nevertheless, we should mention that we have lost
one nice property we had for other algebras: We cannot
define it purely algebraically, i.e., as an algebra built
up by some operators with some norm satisfying some
commutation or anticommutation relations. But this
should not be an essential shortcoming, especially since
the weak closures of the algebras in question coincide
for all physical relevant representations. The real
problem that remains is how strong continuity can be
saved if we turn to the algebra of statistical mechanics.
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Calculation of special functional integrals
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For the integration with respect to a Gaussian weak distribution of a special class of functionals ¢ defined
on L %O,I] explicit formulas are derived. The ¢ are defined as nonnegative integer powers of a continuous
linear functional B and the integration is performed under the condition that another continuous linear

functional A assumes a given value.

INTRODUCTION

The application of the projection operator method by
Zwanzig' in cases where the phase space £ is a function
space (Hilbert space) makes the evaluation of certain
functional integrals necessary. The definition of this
projection operator implies the definition of an integra-
tion process over all possible states £ of the system
under consideration. We confine ourselves to integra-
tion with respect to a Gaussian density and to £
= L%, ,,. Skorohod? has shown that this density, defined
on all finite-dimensional subspaces of the separable
Hilbert space , is compatible and yields a weak distri-
bution on 2. We consider two linear functionals A, B
and derive the explicit form of the integral of B*, where
az 0 integer, over { under the condition that A assumes
a given value a.

DEFINITIONS

Consider the real Hilbert space 2=L% where R
=[0,1] with the scalar product

(@,9)= [ die(£)y(e) for ¢,y Q.
The linear functionals have the form

Ale()]= [_dta(E)e(®) (1)
and

Blo()]= [ dgb(&)e(s), (2)
where a(£),b(£) € Cp, (continuous) and let

J, dta*(£)>0 and de5b2(5)>o.

A and B are obviously defined for ¢ € Q. The integral
over § is defined as (see Ref. 2, Chap. 1, Ref. 3, I)
S waeeM]=1im [ p@e)fle,()],
n

ne o

®,=¢(P,p),

where {Pn} is a sequence of projections of @ onto the
finite-dimensional spaces . P, is defined by Py
i= 1o n, Ye Q,

@0, = 1 dt o(§), {

and 4, is the ¢th interval of the division ¢, of R, The
sequence {¢,} must satisfy

maxl,~0 as n—.

aEe,
The symbol (¢,)] denotes the step function which has in
interval A, the value ¢,. Therefore, (¢,)7< L%=0 and
,C Q. The differential p (d¢) is chosen as Gaussian
and defined as

K(de)=expl-3(P,0, P,0)) 1V, /21d0,.
i=1

We want to calculate the integral® for a special class
of functionals that have the form

Fle()]= B o()]8(Al @(+)] - a).
Some remarks are necessary concerning the integra-
tion w.r.t. a weak distribution that does not define a
measure on (2,3) (3 Borel o-algebra of subsets of Q).
From the form of u,(d¢) given above we see that for
each finite-dimensional subspace 2, n, defines a
Gaussian measure with the identity 7, as correlation
matrix. In the limit »—~ © we get therefore the identity
I as correlation operator of the weak distribution, and
since I is not nuclear, the sequence {un} does not gener-
ate a Gaussian measure. But the integral of f[¢(+)]
w.r.t. this weak distribution can be defined (see Ref. 2
Sec. 2) and can be useful in application, if we keep in
mind that this integral is not o-additive.

’

The main result is stated in Theorem 2. For the
proof of Theorem 2 we need the formulas given in
Theorem 1 below. We introduce the notations

X= [ dia*(s)

v=[ dtalb() and rE}Y;,

szRdgbZ(g)
where a(£),b(¢) are defined by (1) and (2).

THEOREM 1

Let x> 0, 7> 0 be integers, the linear functionals be

I l.=& &,
178y =5 |  eiven by (1) and (2); then
fn w(de)A [ (9)]B*[o(+)]
0 for a+1=2k+1, k=0,1,2,+--,
all!l L2 T*
— s xm, . ) — — — es0 =mji
_ Xz G Tom = TR for @=2v,l1=2m,¥,m=0,1,2,+>°, T=min(a,l)
1/

alll =) I*
g VX 2 L T T
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for a=2y+1,l=2m+1,y,m=0,1,2,--,

T=min(a-1,7-1).
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Pyoof: To any projection P, of £ into the r-dimension-

al subspace @, there corresponds the n-fold integral

Bo=Jy, i) 2P,0] BP,¢)

© w o, i
:f coof exp (_%}l,lﬂﬁ) -<i£)l,ai<pi> . (El,bigoi>a
= =1 i=1

X RWd(p ;
or
]rlrx:f,...g 25 Elvl...lulu ceel,
vy=1 vyslitgal b e o
xaul...a b b, f” f_i%l...(pulqpul...%u
Xexp <—%§li¢3>iﬂl\/7,7§5 e,
where P , I, ¢, are defined as above. Since the expo-

nent of the Gaussian density has diagonal form, we can
apply the relation

f wxme-xz/zaz dx = {gzx " (Zk)!/sz! ,
- ov 271'

For [+ a=2k+1, k=0,1,2,+",

m=2k
m=2k+1,

(3)

n,=0= [ wde)B[e("]aY¢()]=0

For [+ a=2k and a=27, | =2m we see that the integrals

in I}, are nonzero iff even numbers of indices coincide.
Therefore, the sum can be reduced to

p;a___,...zlz ..012 L/a S b "'b

ky=1 kp=1

TR

where 3, 4, is extended over all possible mappings A, of
the 2k -element index set {v, **v 4, *** 1L } onto

{k;° ** k,t and where Aj'(k,) has exactly two elements
and A;'(x,) N A7 (k)= ¢ for m#j and for all 7. Integra-
tion yields then

fj;---f::(pv]..-

k
[17;' for all «, different,

i=1

o

O P (e,

TP HadP)

Hl' +C Hl‘ at least one «,=«,,

i=1 “i i=1 “i
where C is determined by (3) and depends on the num-
ber of coincidences k, = «;, but not on n. Then we get

T

Py n e s . n
P= 1 Ds(glicﬁ) 1'</_/l,aibi> -<Llibf>2
s=5¢(2) i=1 i=1 i=1

+0(1,),
where

n;=3{-58), n, =3(a -s),

SOZO T:min(a,l).

The coefficients D, are determined inductively by count-

ing all configurations that lead to a given exponent s in
n_:

la
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alll
[1-s)/2]1s!(a -s)/2]!
The terms O(l,) come from diagonal terms in the sums
over k, and are of order ;. The desired integral over
£ can be evaluated by
J w@e)Ale()]Bo()] = limIy,

neo

D, = 28"k

where

n
2085~ X
i=1

ﬂ\
2lab; ~Y
i=1

as y —x

a2,
2Ll Z
i=1

because a,6 € Cp,. For [+ a=2kand x=27v+1, [=2m+1
a slight variation of the same arguments applies and
therefore they shall not be repeated.

THEOREM 2

Let the linear functionals A[¢(+)], Blo(+)] be (1) and
(2); then (a) for a=2y>0, v=0,1,2,+* even

J_w@e)saleo)] - aBlo()]
- ﬁ;x ORA )

& i (5) - ()

(b) for a=2y+1>0, y=0,1,2,°++ odd
[, ma9)sale()] - a) B e()]

_ _al .z(z)’. (_>
T4y X\z/) P T ax

b o () e
o R+ DIy -R)! \ 4 Zerl 2X
where X, ¥, Z, T are defined above and H,(y) denotes
the Hermite polynomial of order n.

[ )
[

7 M

Pyoof of (a): We use the well-known fundamental se-
quence {6, } defining the delta distribution

5, (x - 1) = (k/ V) exp[- k*(x — )],
where

8x - 8)=[6(x-10].
Then we can write the integral (3) as

J, wldeyriol)]
—l1mhmf u(de)s, (AP @] -

ke ® peo

a) B[ Py].

Consider I,,= fQ u,(d9)5,(A[P,¢] - a)B*[P,¢] for n,k
>0 fixed. I, is bounded as n — «:

js; ,(d9) expi- k*(AlP, 9] - a)*}B(P, 0]

k
|Ink‘: _\[—-_;

< —%f i(de)|B(P,0]|
Q

for a=2y= 0; it follows from Theorem 1 that
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|1,] < &= [ 1,(d@)B[P, 0]

- £ o LS R AEOT + 00} < =
for a=27+1>0:
IAE f 1, (d9)B7[P,0]|BLP,0)|
< % 1, dQ)B? [P, @]+ B72[P,p]]< =
Qn

using | B[P, ¢]| <|+ B*[P,¢] and Theorem 1.
Then the series

5 l)mk"’"'f u,(do)AlP,0] - aymB*(P,0]
[v]

n

is convergent to I , for all finite @ and for »n — = be-
cause for ¢> 0 exists N (a):

k (-1)™
m!

S,A[P,¢]-a) - = A ‘B*me (A[P,@] - afm|<e¢

for N>N,.
1t follows that

f u,(d )8 (AP, @] - a)B*[P,¢]
QY‘I

_k i 1)mk2"'f u (doWA[P, @] - aY"B{P o]
\/‘_ m‘ Q" n n n

< efnnu"(d¢)|B°'[Pn<p] | for N> N,.

This holds for n — « because
lim [, 1 (d9)] BoLP,0] [ <o

and

I,=1liml <,
n-o
as has been shown above. Therefore, the right-hand
side of the inequality can be made as small as desired
independent of » and the series converges to [, as
n— <, Since

fn,, 1, do)AlP, 0] ~ a)B{ P ¢]

is analytic in @, the series may be rearranged in powers
of a. After carrying out the integration using Theorem 1,

we get

Lent
°—ZJ( U S e
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min{z=6,7) ™
é Clr-6-01(r—r1"
then
(-1)° e (YY.__ I
Co=or " g:(“” (2) (- 0!

(=1) (21+26+2k)! (VY
X,Z; 1 ((+6+0! (E>’

which represents C; only for V<3. To get a represen-
tation for all V>0, we consider the series S,(x) in
powers of x

= . (—1)F (21 +28)!
_ 1 A 2 Neb T asiE
S,(x) _;):;h,x with 2, = — TENIE
then the coefficients h, satisfy
1+(2+1)/21
h0:(2§)l/£!, h1+1=—4hl 1+(1—/—l——, 1>0.

From Leibniz’s criterion for alternating series follows
the fact that S,(x) converges for 0 <x< 1 and S(x)
satisfies the differential equation

S;(x)(1+4x) +2S,(1+28) =

with initial condition S,(0)=

28! 1
ﬁ! (1+4x)£+1/2

h,. Then

Se(x) =

as easily can be verified. For C, we get a representa-
tion valid for all V=0,

1 (-1) ( 1% )5
T V12V (25! 1+2V

=1y

o 2y = k)]

26+ 2x)!
(6+ !

() ()

(—;)KK) (2K£V)K

, (26 +26)! ( vw )6
(d+&)t \1+2V

A (=1)°
) 5&; (26)1

Rodriguez’ formula for Hermite polynomials H (x),

H (0= (-1re" (),

yields (V= 0,

(=10 (26+2k)! VW J1/2\ 26
2@ Gl ([1+2VJ >

_x ( vw \? Vw
=P \1r2v CXP\ - T3 av

and

W =0, see definition)

o g*.( 4 )1/2. ( VW
»= Tax\2 172V P\~ 172v

L (=1F 124% vw \'/*
.,?:;(ZK)'-(Y—K)'.<2+4V> “Ha (1+2V> ’
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and finally for k& -« we arrive at
[, ude)sale()] - a)B*o()]

= (3) e (- 5) et

() n()

The proof of (b) goes along the same lines and shall not
be repeated here.
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The method of Weyl transforms is used to rigorously derive path integral forms for position and
momentum transition amplitudes from the time-dependent Schrodinger equation for arbitrary Hermitian
Hamiltonians. It is found that all paths in phase space contribute equally in magnitude, but that each path
has a different phase, equal to 1/h times an “effective action™ taken along it. The latter is the time
integral of p-g— h(p,q), h(p.q) being the Weyl transform of the Hamiltonian operator H, which differs
from the classical Hamiltonian function by terms of order h?, vanishing in the classical limit. These terms,
which can be explicitly computed, are zero for relatively simple Hamiltonians, such as

(172 M)[P — e A(Q)F + V(Q), but appear when the coupling of the position and momentum operators is
stronger, such as for a relativistic spinless particle in an electromagnetic field, or when configuration space
is curved. They are always zero if one opts for Weyl’s rule for forming the quantum operator
corresponding to a given classical Hamiltonian. The transition amplitude between two position states is
found to be expressible as a path integral in configuration space alone only in very special cases, such as

when the Hamiltonian is quadratic in the momenta.

. INTRODUCTION

The Weyl correspondence between quantum-mechani-
cal operators and ordinary functions in phase space has
not received enough attention in the textbooks. This
neglect stems from the fact that it was introduced by
Weyl! (who derived it on the basis of group-theoretic
arguments) primarily as a means of forming unique
quantum-mechanical operators from classical functions.
As such, it was only one of many such rules, with its
advantages and drawbacks. 2

However, it turns out that the Weyl correspondence,
regarded simply as a way of transforming an operator
into a function and vice versa, can be used as an analyti-
cal tool for quantum-mechanical calculations. It is our
purpose in this paper to use it to derive path integral
forms for various transition amplitudes from the time-
dependent Schriodinger equation for arbitrary Hamil-
tonians.

. DEFINITIONS AND NOTATION

Let Q(¢), P,(!) be the (Hermitian) position and momen-
tum operators at time {, with eigenstates ¢, ), ip, £
and eigenvalues gf, p,:

Qi a, H=4q'lq,t), PAO|p,y=p,|p,

The g¥’s are rectangular coordinates and the p,’s
their conjugate mates. We work in » dimensions and all
integrals will be over IR". Boldface capital letters
denote operators, lower case letters denote ordinary
numbers.

(1)

The eigenstates are required to satisfy the Schridinger
equation:

., 0
Zﬁa_[<qrtl :H(PyQ’ t)<q9tl9

it 2 (p, t| =H(P,Q, 1) (b, 1| (2)

with the boundary conditions

(a,tlq’,=06(g—q"), (b,L|p",y=8(p—p"). (3)
If the (Hermitian) Hamiltonian operator H=H(P, Q, ¢)
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is time-independent, (2) can be solved to yield

lq, &) =expl(itH/m)|q), |p, 1) =exp(itH/R)|p),

where |¢) and |p) are time-independent (stationary)
states. (1) and (4) can be used to show that the operators

(4)

Q' = exp(- itH/R) Q¥(t) exp(itH /%),
P, = exp(- itH/%) P (¢) exp(itH/7) (5)

are time-independent, with eigenvalues ¢?, p, and eigen-
states 1¢), Ip).

The momentum eigenvector |p) is chosen fo have the
coordinate representation (plane wave):

(q,t|p,ty=(q|p)=h"12exp(ip - q /1), (6)

where h=27%, p-g=p,q*+--+ +p g". We assume that the
eigenstates form complete sets:

[ 1o, t¢p,t|dp= [ |a,t) {g,t|dg =1, (7

where dp=dp, ...dp,, dg=dq"...dq". On the basis of (6)
and (7), one can deduce the representation of P, in co-
ordinate space and the commutation relation:

<pIP1:_Zﬁ£T<p" [Q’,P]]:zﬁéil_ (7’)

Hi. THE WEYL CORRESPONDENCE

Here we follow the clear presentation of DeGroot and
Suttorp. * By expanding an arbitrary operator A=A(P, Q)
in position and momentum eigenstates,

AP, Q)= [ dp’dp”dq’ dq”|p"y(p’|a" (g’ | AP, Q)

x|gm<g"|pmp”|, (8)
making the change of variable (of Jacobian unity),
P =p-u/2, p"=p+u/2,
q¢'=q-v/2, q"=q+v/2, (9)
and using (6), we get
AP, Q) =h" [ dpdgdudv|p-u/2)(q-v/2|A(P,Q)
X]q+v/2)(p+u/2’exp[i(q-u+p-v)/h‘] (10)
Copyright © 1975 American Institute of Physics 2201



A. Definition
The Weyl transform of an operator A(P, Q) is
ap,q)= [ dvexp(ip-v/B) (4 —v/2|AP, Qg +v/2. (11)

The innerse transform is then given by (10):

A(P.Q=k" [ dpdqgalp,q)Alp, q), (12)
where A(p, g) is the Hermitian operator
Alp, q) = f du exp(iq - u/h) jp —u/D{p+u/2 [ . (13)

One can show that the following alternate expressions
hold:

alp,q)= | duexpliq -u/B){p+u/2|AP,Q)|p-u/2), (14)
A(p, q)= [ dvexp(ip-v/T) |q+v/2) (q-v/2]

:h'“f dudvexp{(i/ﬁ)[(q—Q)'u+(/)—P)-v]}. (15)

B. Properties

a) The correspondence is one-to-one. (We shall de-
note it by —.)

b) If A(P,Q)-—a(p, q), then AY(P,Q)~— aX(p,q). In
particular, if A is Hermitian, a is real.

¢) The inverse transform can be written in the com-~
pact form*

A<P,Q)4[{exp<2}; - aq)} o) e

Q before P

i.e., after evaluating the function inside the bracket,
replace p and ¢ by P and Q, with all the Q operators
placed before the P operators. This formula, which
enables one to write down the operator A to arbitrary
order in %, gives the important result that in the classi-
cal limit the functions a and A are the same:

alp, gy =Alp, ¢) + iha(p, ) + (@Y ay(p, g} + -+,

lim a(p. q) =A(p, q). am

Hence, for Hermitian operators, a(p, q) is a series in
ne,

C. Examples
f(PY— £ (p), (18)
QY- glq), (19)
AP, q") = W&{p~ ") 64— '), (20)
FQP,GQ)~—p,FG+ (ilk/2)(F ;G-G F) (21)

FIQP,VIQ P, G(Q)
—pib; FGV + (il/2)[p,FGV - p,FGV ,
tp GV AP, F GV =p FG . V-p ,FG V]
+ (/) |F GV ;~F GV +FG ,V  —FG V
+FGV = F GV-FG ;V+F G V+F G V]
(22)

The proof of the first three is straightforward. In the
last two, which we prove below, F, G, V can have any
number of indices and are evaluated at 4.
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Proof of (21)
The transform of F(Q) P, G(Q) is
alp,q)= [ dvexp(ip- v/ (q-v/2|FQP,|p"{p'|
XG(Q)|q +v/2) dp’
#} v F(qg-v/2)G(g +v/2)
xexp(ip - v/myikd | (v)] (23)

since the integral over p’ yields the derivative of the
delta function. The result readily follows.

Proof of (22)
The transform of F(Q)P, V(Q) P, G(Q) is

alp,q)= [ dvexplip - v/B)(q~v/2|FQ)|p" dp’
<(p'| Pyl gy da’ (¢" VIQ P, (p")
X ap"(p"| GQ)|q+v/2)

=h?n [ dvexplip-v/h) Flg - v/2)Glq + v/2)

x [ dq'Vig" | plexplip’ - (q—q' —v/2)/h) dp’
[ pyexpl-ip"-(q—q' +v/2)/k)dp"
— 7?8 /9v%) lexplip - v/K) F(q — v/2)

X G(q+11/2)V —U/Z)]
+ (02 /aviavd) lexplip - v/BYFlg —v/2) Glg + v/2)
xXV(ig— U/Z)JLWO’ (24)

and the result follows. Special cases of (22) are

ih 9 ifl
?ﬁ)(f’f F i) G, (29
2 ) (r 5 f,j)vw)‘ (26)

q i
i o "
2 aq"> } V).

P, P, G(Q) — (p,. -

jail

- P)'“WQ)H{f)( -G )(p,-—

i=1

(2m
If V¥(Q) is a symmetric matrix, V¥ =V, then
P, VHQ) P, ~— pp, Vi) + IV Y (g) (28)
F@Q)P, VU@ P, FQ)— p,p, FFVY + in*(S F?VE . (29)
+F F ,VV~F ,FV¥).

The plausibility of the rule is strengthened by the
following correspondences: if A«~—a and B-— b, then
(Ref. 3a, p. 348)

1 (AB+ BA) ~— ab + O(K?), (299
7 da ob Bh aa

—_ —_ -——— o — _ 9/,
- (AB—BA) 5 34 b +0oUD. (297

Weyl’'s rule is consistent with Dirac’s rule that the
classical Poisson brackets become commutators (within
factors of 7).

We will need the matrix elements of the A operator,
which can be easily worked out:

{q'|Ap, q) a”)=explip-(q' —q")/T) olq - (g’ +q")/2),
(30)
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-p"/Rl8(p = (' +p")/2),
(31)

(' &b, )l g =21/ explil2q - (p-p") -q' - (2p - p")I/7}

(p'|a(p,q) p"y=exp[-ig-(p’

(32)

1V. THE PATH INTEGRAL

Feynman’s original presentation of the path integral®
as an alternate formulation of quantum mechanics was
based on postulates which were then shown to be con-
sistent with the Schrddinger equation in the special case
of a particle in flat space in a potential. It would be
interesting to see whether, given an arbitrary Hamil-
tonian operator, one can write a formal path integral
(over configuration, momentum, or phase space) for a
given transition amplitude satisfying the Schrodinger
equation. This is the question that we propose to answer
here.

A. Transition between position states

The transition amplitude (or transformation function,
or propagator) for a particle at g, at time /, to arrive
at ¢, at time ¢, is (g,,?,14,,¢,). It satisfies the Schro-
dinger equation at (g,, ¢,) and its complex conjugate at

(g,,t,). By splitting up the time interval [t,, t,) into

m + 1 subintervals,
L=t < <t<

<t <t (33)

mel = tb’

we can use (4) and the completeness relation (7) to write

<qb, tb’f]a, a>—qu1 dqm jﬁ) <qj+l’tj+1 qj} tj)
:f dql T dq'n
x ﬁ <qj‘1 exP[‘i/ﬁ(fj.l-lj>H(P,Q)]’qj>;

=0
(34)
where g,,,,=q, and g,=q,. (34) is an illustration of the
theorem that amplitudes for events occurring in succes-
sion in time multiply —this follows from the requirement
of completeness of position states.

Now let #(p, q) be the Weyl transform of H(P,Q). To
first ovder in the time interval ¢,,, ~¢;, we have

exp{(~ i/m)(¢;,, — t)H(P, Q)] exp[(— i/h)t,,, = t,) h(p, 9)].

(35)

Indeed, the Weyl transform of I- (i/B)(t;, - ;) His 1

- (i/%)(t;,, — t,)h, which can again be written as an
exponential. Now, the crucial point is to rewrite the
above time-evolution operator as the inverse fransform
of its transform, using (12); then the matrix element of
the right-hand side of {34) reduces to a definite integral:

(g1 |expl-i(t,,, ~ t)H/n]|q,)
=(g;. | (2nm)y™ [ expl-i(t,,, - t,) W(p, q) /K]
X A(p, q)dpdq|q,)
_ - i1, {2—qy
=2y | dpe"p{ﬁ [p (t,.l =, >
1 +
~h (p, "—zi)] (fj = t,-)} , (36)
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where we have made use of (30). (34) now becomes

COIRTI S
m dp
:fd(h“'dCIm jg) f (27R)

Xexp{ [p (—”‘1_*?"—) <P, %ﬁﬂ)] (0~ f)}

(37)
. dq}'“ dedpodpl'“dpm
- (271'7[)(""1)"
i ¥ 94179
><exp{;z ﬁZG [ (tm $f>
+
—h<P,-, @%__ﬂ)](tjd—tj)}. (38)

Relations (37) and (38) have been rigorously derived from
the Schrodinger equation and are valid to first order in
max(t,,, ~ ;). In the limit m —~ when max(t,,, - ;) ~0
together W1th $ho (¢~ t)=1t,—1t, the integrand in (38)
tends to a well-defined functional in phase space, and

we can write the transition amplitude as a path integral
in phase space (the dot over the equal sign indicates that
this is a symbolic notation):

. dp d
(yr 1] 450 1) = f [(zl;rg"]

R ty
xexp( L J b0+ 0) = o), o] ).

39
The passage to the limit raises serious and difficult #)
mathematical problems about which there is an abundant
literature. We shall not be concerned with them here,
as we only wish to make a qualitative analysis. A num-
ber of general statements can be made on the basis of
(38) and (39), direct consequences of the Schrédinger
equation.

a) “Principle of democracy”: Each path in phase space
contributes equally in magnitude. Note even the absence
of a mesh-dependent “normalization factor.” Note also
that this is true only if A(p, ¢) is real, i.e., if H(P,Q) is
Hermitian, This property may not be true for non-
Hermitian Hamiltonians,

b) Each path in phase space contributes with a phase
equal to 1/7 times an “effective action” taken along it.
Since, by virtue of (17) and the Hermiticity of H, we
have

hp, q}=H (p, q) + O(1*)

where H (p, q) is the classical Hamiltonian, we see that
in the classical limit the phase is proportional to the
classical action. As one can easily verify, many Hamil-
tonians of physical interest, such as P?/2m + V(Q) or
(1/2m)[P - (e/c)AQ)] + ep(Q) are such that® h(p, q)

=H (p,q), a coincidence which conceals this subtle point:
It is 2 and not H_which rightfully belongs in the exponent
of (39). h(p, q) is always equal to H (p, q) only if the
operator H=H(P, Q) is defined to be the inverse Weyl
transform of the classical Hamiltonian H (p, g}, i.e., if
Weyl's rule for ordering the factors is chosen.

(40)

Thevefore, accepting Feynmman's postulate that each
path comes with a phase equal to 1/% times the action

Maurice M. Mizrahi 2203



Junctional is entively equivalent to opting for Weyl’s rule
in constrvucting the quantum Hamiltonian.

Note that this should in no way be construed as an
argument in favor of Weyl’s rule. For example, if one
associates the operator

H=e¢(Q)+ c(II? + M2 2= 00 (Q)
+ M + Lell? - 111t + 0(3)] (401

(where =P - (e/c)A{Q) and e= (Mc)?) with the classical
Hamiltonian H = e¢(q) + cilp - (e/c)A(q) ] + M2} /2 for

a relativistic spinless particle in three dimensions in an
electromagnetic field, it is easily checked that the Weyl
transform of H is not H _ but 2 nonterminating series in
k®, where H_ is the leading term.

Expression (39) with H_(p, ¢) in the exponent was
hinted at by Feynman, and later developed by Davies
and Garrod.”

¢} We see from {38) that the time-slicing method con-
sistently yields the correct propagator [to first order
in max((,,; - t ;)] if the position-dependent terms are
evaluated at the midpoint (q,,, + q].)/z and not anywhere
else, such as g, or (g, + ¢, +q,,,)/3. This point is often
neglected, and its neglect leads to incorrect results
{sometimes used to cast doubt on the validity of the path
integral formalism). ® Here we see that the “midpoint
rule” is a direct mathematical consequence of the
Schrddinger equation.

d) Similar expressions are obtained if the Hamiltonian
is time-dependent, provided [H(¢), H(s)]=0 for all
t,s ety t,). The time-evolution operator is then

expl (- z‘/ﬁ)ft‘f'*l H(P,Q, s)ds]
which is

exp[(— l/ﬁ)H(p; Q1 [J) ([]u,l - f])J
to first order in /,, -
before.

It is worth noting for the sake of symmetry that by
inserting m + 2 complete sets of p states in the prop-
agator |rather than m sets of ¢ states as in (34)] one
still obtains (38), but with the ¢ terms evaluated at ¢ ;
and the p terms evaluated at the midpoint (p,,, +pj)/2.

l;. The argument proceeds as

The uncertainty principle is automatically satisfied by
(39) in that we have no information whatsoever on the
initial and final momenta (the particle being sharply
localized), and hence the path integral is really an inte-
gral over all continuous hypersurfaces in phase space-
time spanning the lines (¢=g¢,, {=1)and (g=gq,, t =1,)
and including them, with no motion backwards in time
permitted.

Path integrals in configuration space

We now ask the question: When does the path integral
in (39) reduce to a path integral over configuration space
alone ? One might be tempted to answer that, after
performing the p integral in (37) (an ordinary integral),
we would be left, in the limit m —«, with a path integral
over configuration space. However, there is no guaran-
tee that in the limit m — « the integrand will tend to a
well-defined functional in configuration space. This point
is of crucial importance. We give an example and two
counterexamples.
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Counterexamples
Consider the Hamiltonian

H(P,Q)=c(P* (41)

corresponding to a relativistic spin zero particle (n=3)
of mass M. Its Weyl transform is k(p, q) = c(p? + M3c2)*/2,
By use of the integral representation of the Hankel func-
tion,

+ M2 D2

L explixy +ib(a® + x)/?] ax

= (- mab/(b* - y*)|H(a(b® - y*)*/?), (42)

and the formula

a H)V(x) _ 10 2 L

dx (T) =L Ho () = = H (%), (43)
we can perform the p integral in (37) to get®
- - ck’T ) )
<qj¢1)tj+l qj!tj>_ E H (kE)— £ H (kE) (44)
where £=(c?T? - R®)1/2, quj,l 4, T=t,, - » k=Mc/

z. This propagator satisfies the Klem—Gordon equation
1 az M2 2
( 2 = ) g, ) =0

Vo o —— =
e % 3P ne

at either the initial or the final point. A somewhat less

physical counterexample is

H(P,Q)=3(P°f(Q) +3P*f(QP + 3P/ (QP*+ F(QP°] (46)

in one dimension. Its Weyl transform is simply k(p, q)
=p°f(q). By use of the integral representation of the
Airy function,

(45)

(2m/a"’ 3 Ai(- ca?’?), (47
we can perform the p integral in (37) to get
gty =038, =t ) F(s)®

X AL = (q,., — a2 [3(t,,, - 1) f(s,)] 2},
(48)

fm exp(~iax®/3 +iacx) dx =

<q4~+1s tia

where s;=(q;,, +q,)/2.

In neither of these two cases do we get a well-defined
functional of the path in configuration space as m — «<.
Further, (48) is real, and has no phase one could equate
to the action. *°

Example: Hamiltonian quadratic in the momenta
Consider the classical Hamiltonian function:

-A)p, - A+ Vig). (49)

The corresponding quantum-mechanical operator is
not clearly defined due to the factor ordering ambiguity.
Let us try the manifestly Hermitian operator:

H(P,Q =(1/2M) g*Q) [P, - A,Q]g Q)

Hp.a)= 5 £7(0) b,

xgHQ)[P, - A,Q)] Q) +V(Q), (50)
where
g=—det(g;,)#0 and gi*g, =05%
and a is some real number. The Weyl transform of
H(P,Q) is
kp,q)=H (p, q)+ (F*/2M) [ £*(g** g')
+3g) (g%, 8% gV - 3g*), ;&2 gv], (51)
Maurice M. Mizrahi 2204



where we have made use of (29), and the fact that, ac-
cording to (21),

$HFQP,G(Q) + GIQP, FQ)]— p,Flq) Glq). (52)
We now define the Christoffel symbol
T =588 ™ Buars ~ &in, (53)

which we use to express the derivatives of the metric
coefficients and metric determinant:

(54)
gi=0(=g"). (55)

After working out the higher order derivatives and sub-
stituting in (51), we finally get

Wb, q)=H (p, q) + (#*/2M)g"[( 2a+4)l“"' ',
40— Qa+ PIe, + 4T
+{(2a+ 3P rmm,rl,j]. (56)

The only covariant combination we can form with (56)
would have to involve the Ricci scalar curvature tensor:

(g%),;=2ag"T",
g9, t T8+ 17,

J

lf

R=gi(It  =T!  +T' T, ~T' T" ). (57)
For the choice

a=-1 (58)
we have
mp, q)=H (p, q) + (B /8M)[R(q) + T™, (q) P'mj(q)g”(q)]-(sg)

Since P, is represented in coordinate space by - i%2/dq!,
we easily infer that H(P,Q) in (50) with o = - § is co-
variant when operating on a scalar density of weight 3,
which is what |g,? is if 1¥{(q, )12dg= 1(ylq, t)1%dg is to
be an invariant.

The Weyl transform formalism, and in particular the
plane wave (6), not being covariant, we should not expect
h(p, q) to be covariant even when H(P, Q) is.

One might think of (49) as the Hamiltonian describing
a particle of mass M moving in a curved n~dimensional
space with metric g, =g;, in the presence of a vector
potential A, and a scalar potential V. Since our for-
malism is valid only when the ¢’s are rectangular co-
ordinates, we can assume that the curved space is em-
bedded in IR¥ (N =), so that we can use rectangular co-
ordinates to write the line element in our curved space.

Let us now perform the p integral in (37) with A(p, q)
given by (59). We need the well-known result

Jon dpexplid - p= (B pp, /2]

=(27)*/2Vdet B exp(— B,;b'b?/2). (60)

for any invertible matrix B. With the change of variable
p; TA;(g)=p; our integral can be brought to this form,

and the result is:
m M n/2
¢ £y = da, - — =
(CRYNTIRS f 4, dq'"[,g(znm(tw-t.»

G+ l
Xg1/2< 4 12 q ) exp( 2 l j@l )’
where
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l

Mlgu-4;V (-4 o qz'+1+qi>
=2\t 1, ta—t; ) 5t 2

930+ 4;\ (4i1=aiN o (Quta;\ _ FE
+As( 5 )(tm-tj) Vit M
st -+
X [R (—L-———-’-q 12 q) +Te, <____._.qf 12 q,)

‘e + . iv + .
« rtsb<q: 3 qz)gab(q: & 4:)]. (62)

In the limit m — =, the integrand indeed tends to a well-
defined functional, and we can write the propagator as a
path integral in configuration space alone:

(gyr ty1a,,t) = [ [dg/NTexp{(i/m S, lql},

where the “effective action” functional is

t « se . ..
Sexelal= [ dtiiM g, ()a'd’ + A (g)q*

(63)

- V(g) - (B /8M)|R(g) + T™ (q)T° .. (q) g"(q)]}. (64)
This is seen to be, in the classical limit 7 —0, the
time integral of the Lagrangian associated with (49).
Note the automatic appearance of the correct “nor-
malization factor” N in (61). Note also that since the
factor g'/2 is evaluated at the midpoint, it cannot be
used to make the volume element dg, -+ dg,, an invariant.

B. Transition between momentum states

The foregoing results are completely symmetric with
respect to momentum and position. We can write the
transition amplitude for a particle with momentum p, at
time {, to have momentum p, at time #, in a manner
similar to (34),

br b|pa’ a fdp1"'dpm
X T (b, expl(= i/t - 1)HE, Q5

(65)
by inserting m complete sets of momentum states and

using (4). Again, we write the time-evolution operator
as the inverse transform of its transform, to first order

in max(¢;,, - £;) and use (31), with the result

dg

i
0
2 (bia=Di\ (PiatD;

(ti=1;) (66)
_ dp, - dpndq, dyq, -*- dqn
- (zﬂﬁ (m+l)n
[ Din—p pin+pi
xexp{— 74 [q,» (ti _[]f) +h< j ey q])]
(= t) (67)

= ([22d4 } exp . ’ lg - p~hip,q)]dt (68)
Jlar] =i ] )
q(t,,)])

eXp(,—z; (b, - aq(t,)

. tb ,
Xexp(—;/ [p-q—h(p,q)]dt>
ta

(g - p) — ¢+ p. Note that this formula differs

(69)

since g+ p =
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from (39) by insertion of an extra functional in the
integrand [¢(¢,) and g{t,) are completely undetermined].
From (68) we see that it is the p terms this time which
must be evaluated at the midpoint (p, , +p,)/2 and that
the path integral can be reduced to a path integral in
momentum space alone only if & is quadratic in the ¢’s,
i.e., not beyond the harmonic oscillator (this is why
path integrals in momentum space have generated little
interest).

V. CONCLUSION

Weyl’s correspondence has provided us with a “royal
road” from the Schrédinger equation to the Feynman
path integral. It is clear now that in order to generalize
this path integral approach to arbitrary Hamiltonians,
one must work in phase space with the Weyl transform

of the Hamiltonian operator, rather than in configuration

space with the classical action.

ACKNOWLEDGMENTS

I gratefully acknowledge discussions with Professor
Bryce S. DeWitt and with Dr. Peter A. Hogan.

*This research was supported by the National Science Founda-
tion, Grant No. MPS 74-03583 AO1.

1H, Weyl, Z. Physik 46, 1 (1927); Theory of Groups and
Quantum Mechanics (Dover, 1950), p. 275.

’For a discussion of these various rules, see J.R. Shewell,
Am. J. Phys. 27, 16 (1959). For example, Weyl’s rule does
not satisfy Von Neumann’s requirement that if O{4) is the
operator corresponding to the classical function A, than
0(f() =f(0(4)).

3 a) S,R, DeGroot and L.G. Suttorp. Foundations of Electro-
dynamics (North-Holland, Amsterdam, 1972), Chap. VI and
Appendix. (b) See also B. Leaf, J. Math, Phys. 9, 65 (1968)
and H,J. Groenewold, Physica 12, 405 (1948),

N.H. McCoy, Proc. Natl, Acad. Sci. 18, 674 (1932).

SR. P, Feynman, Rev, Mod. Phys. 20, 367 (1948).

#These cases were suggested as a problem in DeGroot and
Suttorp, Ref. 3a, p. 366, where the procedure is outlined.

'R. P. Feynman, Phys, Rev. 84, 108 (1951}, Appendix B; H.
Davies, Proc. Camb, Phil. Soc., 59, 147 (1963), Claude
Garrod, Rev, Mod. Phys. 38, 483 (1966). See also unpub-
lished notes by J. Plebanski, “A Phase Space Approach to
Quantum Mechanics. ”

81..S. Schulman [“Caustics and Multivaluedness: Two Results
of Adding Path Amplitudes,” in Proceedings of the Interna-
tional Conference on Functional Integration and Its Applica-
tions (London, 1974) (to be published)] has given an interest
ing physical explanation of this rule: It follows from the re-
quirement that a gauge transformation induce only a change in
phase in the propagator for the simple case of a particle in
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we get

an electromagnetic field). Here we see that the rule can be
extended to arbitrary Hamiltonians,

*This result is exact even if ¢, -, is not small, Indeed, for
Hamiltonians f(P) depending only on momentum, the propa-
gator can be reduced to a definite integral:

(s bty 1 gyt = [{qy 1 2P | expli=i/B) (t, ~ t)F(P)] | q,) dp
=k [dp exp{ G/ p * (g, — q) —F(p) & — 1)},

See Kursunoglu, Modern Quantum Theory (Freeman, San
Francisco, 1962), p. 162, for our specific example.

10Discussion: It must be pointed out, however, that when one

performs the p integral in (37), there are often many different
ways one can rewrite the resulting expression, since we are
working only to first order in € ={;,, ~¢;. One of these forms
may result, in the limit, in an expression such as (63) for an
appropriate normalization factor. We know of no systematic
way to find this form, if it exists. In our counterexamples,
it does not seem to exist, although we come close: a) In the
case of the relativistic spinless particle 41) (c=1) in one
dimension, one has, using (42},
+

s 0019 = Jday - ~day {1 S @ (t%ﬂ_fe o ) :
where A= g,y —q;. This tends to no functional in the limit
€~ 0, but if we argyuc that # is small, and use the asymptotic
formula for the Hankel function [Abramowitz and Stegun,
Handbook of Mathematical Functions (Dover, New York,
1965), p. 364],

/2
H1(1)(z) = (%5 exp (- 37i/4) expliz),

Izl =

5 \1/2
<qbrtb | qa,ta>= qul .o 'dqm{ﬂ (i Mz-%) (e? _AZ)-5/4}

§=0

;i m A\ 12
exp[iﬁjz_"aM(l—-Z> {l.

Since the associated Lagrangian is — M(L — g%)!/2, it is obvi-
ous that in the limit we get the “Lagrangian” path integral
(63). This argument, however, is strikingly artifical, and
even erroneous, since, in the limit, the argument of the
Hankel function behaves as + M(e/%) (1 — ¢*)1/? which is not so
large after all, 7 being fixed. For small z, Hi“) (2) ~~2i/mz,
and we do not get anywhere near (63), '
b} The propagator (48) for the Hamiltonian cubic in p is real,
and hence cannot be expressed as (63). To see this better,
let us use the asymptotic expansion of the Airy function for
large arguments {the ¢ dependence of the argument is ¢-¥/?)
as given by Abramowitz and Stegun, p. 448 fassume f{g) > 0].
This gives a result of the form

CATEALIE S "dqu_[no{Ni (e, 8, s)expl- A/R)eL;1 V(- A)
+ VAN, (e, AJ,—s) sin[Q/B)eL; +7/4]+ YA) Ny (e, 4, s)
xcosl1/A)eL; +m/4l},

where the N’s are real functions, Y is the Heaviside step
function, s= (g, +qj)/2) and L; is the discrete version of the
corresponding Lagrangian, L =2¢%f-1/2(g)/3/3. Therefore,
even though the latter does appear, in the limit we do not get
the “Lagrangian’ path integral (63).
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Invariant imbedding and the Fredholm integral equation
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The standard method of solving the Fredholm integral equation is either to use Neumann series or to
convert to an equivalent algebraic equation via the eigenvalues. This paper uses an idea similar to that
given by Ueno and others. The integral equation is transformed into a Cauchy problem which can be

approximated effectively by modern high speed digital computer.

. INTRODUCTION

The idea of the principle of invariance or invariant
imbedding was applied to solve the Fredholm integral
equation by Ueno'*? and others, 3~° in a series of papers.
In these papers, two-point boundary value problems are
transformed into initial value Cauchy problems, with
the use of the Bellman—Krein formula. The invariant
imbedding approach is distinctly different from that used
in the standard procedure. The standard procedure in
solving integral equations is either to make use of the
associated Newmann series or to transform them into
a system of algebraic equations via the eigenvalues. 10

In neutron transport, radiative transfer, rarefied
gas dynamics and wave propagation, we deal frequently
with mathematical models of the form of Fredholm in-
tegral equations with boundary values. The importance
of the new approach is that when these integral equa-
tions are transformed into the Cauchy equation, prob-
lems can be more effectively treated by modern
computers.

In this paper, we approach the problem using a differ-
ent method. However, the basic idea is the same as
that used by Ueno ef al., i.e., the idea of invariant im-
bedding. Our starting point is the linear-operator equa-
tions. Our results reduce to those obtained by Ueno ef
al., and Bellman-Krein’s formula is also obtained as
a by-product.

Il. LINEAR OPERATOR EQUATIONS

Let L be a linear operator valued function defined on
a real line R, It maps a space D into itself. I is as-
sumed that L is differentiable. We shall discuss the fol-
lowing equation:

u=g+ Lu, (1)

where g€ D and g is independent of R. Let K be the re-
solvent of the operator L; then a unique solution # of the
above equation can be expressed as

u=g+Kg. (2)

It is noted that the linear operator K is differentiable
with respect to x € R, because L is differentiable and

Lla-pa+ml=o.

Then it follows immediately that » is also differen-
tiable and satisfies the equation

u, =K.g, (3)
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where the subscript denotes differentiation. Let & be
a linear operator having the same domain and range as
L and satisfying the operator equation

$=L,+L®, (4
i.e., for eachue D,

du=Lu+Léu. (5
Upon differentiating Eq. (1), we obtain

u=Lu+ Lu,. (6)
By the uniqueness of the solution, it follows that

u,=du=8(g+Kg). (n
Using Eqs. (3) and (7) and the fact K is differentiable,
we have the operator equation

K,=&(1+K). (8)

By taking advantage of the resolvent, ¢ in (5) can be
expressed as
d=(1+K)L,. (9)
By combining the above two Eqs. (8} and (9), the foliow-
ing Riccati type operator equation is obtained:
K.=(1+K)L,(1+K). (10)

Thus we have transformed an operator equation (1) to a
Cauchy system (10). To show that the above analyses
apply to the Fredholm integral equation, we shall con-
sider the integral equation with an arbitrary kernel, and
we shall show that some assumptions used in this sec-
tion can be proved for the case of integral equations.

IIi. THE FREDHOLM INTEGRAL EQUATION
Let us consider the well-known Fredholm equation

ult, x):g(t)+f(§‘l(t,y)u(v,x)dy, 0st<y, (11)

where g(t) and (¢, y) are continuous real valued func-
tions. (Note that differentiation is not assumed.) The
function g is defined on (g, 8] and ! is defined on [a, b]
X[a, b]. For a fixed pair (¢, x), we may view

Lu)(t, x)= [F1(, y)uly, x) dy,

as a linear operator L on u(-,x). It is well known that
the resolvent kernel exists, and it can be written as

(), x)= [FR(t, v ;x)g(y) dy.

The resolvent kernel is related to (¢, x) by
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k(t, x ;%) =1(t, y) + [o* klt, 2 32)(2, ) dz
(12)

=1 v+ fgz(t, 2)k{z,y ;x)dz.

In the previous section we assumed that L is differen-

tiable, and from that it follows that K is differentiable.
In this case we do not make that assumption. However,
to show that L is differentiable, it is sufficient to show
that «# is differentiable with respect to x.

Let

u(t, x +h) —ult, x)=0(t, x ; h).
Then from Eq. (11) we have

8t x ;) =alt,x; h) + [T Ut v)5(t, y; k) dy, (13)
where

alt, x ;h)= [P 1, y)uly, x + k) dy.
By using the resolvent kernel, we have

o, x;h)=alt,x;n) + fg‘k(t, zx)alt,z;h)dz.

The right-hand side of the above equation has a limit,
as h—- 0, since every point x is a Lebesgue point. From
this it follows that u(¢, x) is differentiable with respect
to x almost everywhere in [a, b]. In fact we have that

—ult, ) =106, Wule, x) + [{rlt, 230U Dulz, ) dz (1)

holds almost everywhere in [a, b]. In what follows, all
the equations involving a partial derivative with respect
to x hold almost everywhere in [a, b].

Now, corresponding to Eq. (10), we have
x
7% ), Rk, v ;%)8() dy

—1(t, ) g(x) + j; 1t kG, 2, 3x)g(2) de

+ f TR, 2 300t 2)gte) de
g

+[xka(t,y ;0L 2)k(@, 2 ;x)g(z) dz dy. (15)
o Jo

This is equivalent to the equation
E-K:l+K +KI+KIK
0x
with the understanding that for scalar multiplication

(L), x) =1, x)g(x).

Upon substituting the integral representation

(@u)(t, x) = [§ @(t, y)uly, x) dy,

into Eq. (8), some algebraic manipulation yields the
well-known Bellman-Krein formula

k(t,y ;%) =@, 0)k(x,v;x) =k, x ;2)k(x, y ;x). (16)

IV. THE DEGENERATE KERNEL AND ITS LIMIT

Let us consider the degenerate kernel
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z@@:émwmw,

where {ai} and {B‘} are two orthonormal sets of continu-
ous functions. Let P; and P/ be two projections defined
by

Pi :f(t7 x) g ‘f;)“f(t) y)B{(y) dy:
PP flt, %)~ [, O0), x) dy.
For convenience we shall write

Pif=f, P'f=f, and P'Pf=f.
Under the projection P;, Eq. (12) reduces to

Ryt x) = ay(t) + [¢*Ut, 2)ky(2, %) dz. am
This equation can be expressed in terms of the resolvent

kit x) = ay(t) + [FR(, z; %) ay(2) dz. (18)
On differentiation of Eq. (18) with respect to x, we have
i)
'&ki(t, x)

* 2
=k(t, x ;%) a,(x) +f a—xk(t, z3x)o,(2) dz. (19)
b

By taking advantage of the Bellman—Krein formula and
the expansion

ke, x %) =53 B ORI, ), (20)
i=1

Eq. (19) reduces to the form
d o, .
sakilt, )= ay(t, %) 25 B ()R ¢, %), (21)
x pe
Note that Eq. (17) can be expressed as
n
Ey(f, x) =k, () + 25 okl (x). (22)
i
On the other hand, according to the definition for #](x),
2= [ PG,
ax ax J, i

=B () (x, %) + f "B 0) Lk, W) dy. (23)
0

Upon a substitution of Eqs. (21) and (22) into Eq. (23),
we find that a Cauchy system holds almost everywhere,

2 K = (m *) +,Z’1 a (x)k{(x))

x (B’(x) +E1 B r}(x) ) (24)
with initial values
k’;(x)zo foralli,j=1,2,...,n.
By Egs. (18) and (20) the kernel is given by

k(t, 3 %) =:E_l BRI, %)
= i B (x) a(x) +i\; a(x)k}(x)
i=1 i
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=5 a,mBi ) +3 5 a,0kx8 (). (25)
§=1 §alg=1

Equation (25) also can be expressed in matrix form
k(t,y ;%) = af’ + aKF', (26)

where a= (o, @y, ..., ,), B=(81, 85, ...,B,), and K is
an nXn matrix with ith row and jth column element ;.

Since an arbitrary kernel can be approximated uni-
formly by a degenerate kernel, it follows that the re-
solvent kernel expressed in Eq. (26) can also be used
to approximate uniformly a resolvent of an arbitrary
kernel. Let L be an operator associated with an arbi-
trary kernel (¢, x), and let L, be the corresponding op-
erators associated with a sequence of degenerate ker-
nels 7,(¢, x}, with /,(t, x) converging uniformly to I(?, x).
Then under the uniform norm,

1K - K Il <llL— LIl +ILJIIK, - KIl +[IL - LJIIIKII,

where K and K, are resolvent operators of L and L,
respectively, we have
1- Kl

IK-K,| < AT IL - L,

2209 J. Math. Phys., Vol. 16, No. 11, November 1975

where LIl #1, Therefore, L, <=L (converges uniformly)
implies K, <=K also. That is, the result in (26) can be
used to approximate an arbitrary kernel uniformly.
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The flow of a classical particle bouncing elastically inside an arbitrary polygon is investigated. If every
interior angle is a rational multiple of 7, there exists preciscly one isolating integral in addition to the
energy; this integral is described in detail; any possible third integral is nonisolating. If one or more interior
angles is an irrational multiple of o, the second integral becomes everywhere nonisolating and non-Lebesgue-
measurable, i.e., the second integral disappears. The flow of two hard points bouncing elastically in a finite
one-dimensional box is equivalent to the flow of a point particle moving elastically inside a right triangle
baving interior angle tan™*' (m,/m,)'’?, so the preceding remarks apply to this model. Nonrigorous
arguments are given in support of the notion that the polygon model is ergodic and mixing, but is not a C-

system.

1. INTRODUCTION

There has been a recent resurgence of interest in the
rigorous analysis of simple classical Hamiltonian sys-
tems, mainly in the hope of illuminating some basic
problems of statistical mechanics,!=® For instance,
Sinai’s proof! that the N-body, hard sphere gas in a fi-
nite box has the strongly “random” K-system property
(and is therefore also mixing and ergodic) makes it ap-
pear likely that realistic classical many-body systems
have such “randomness” built into their mechanics.

Lebowitz has suggested® that it would be interesting

to study the ergodic properties of the unequal-mass one-
dimensional hard point gas, i.e., N bhard points moving

elastically inside a finite one-dimensional box. Even for
the case N=2, this problem turns out to be surprisingly
complicated. Casati and Ford® have recently performed

computer experiments for the case N=2, and have con~

cluded that the system appears to be ergodic and mixing
when the parameter 8 defined by

tanf = (m,/m,)!’? (1)

is an irrational multiple of #, and that the system is
not a C-system (and hence not a K-system}. Of course,
computer experiments cannot prove such results.

As is proven in the Appendix, the two-body hard point
gas may be canonically transformed into a single point
moving elastically (i.e., at constant speed, with equal-
angle bounces from the walls) in two dimensions inside
a right triangle with interior angle 8 given by (1). Hence
the ergodic properties of this “right-triangle model” are
identical to those of the two-body hard point gas. But a
brief study of the right-triangle model reveals that no
extra complication is introduced by generalizing to the
“polygon model,” i.e., a single point of mass m moving
elastically in two dimensions inside an arbitrary (but
nonintersecting) polygon with interior angles 6;, 6;, - -,
8, (Fig. 1).

This paper is mainly devoted to the statement and
proof of some of the ergodic properties of the polygon
model (see Sec. II, Theorems 1,2, and 3). The primary
question, i.e., ergodicity or nonergodicity of the model,
remains open, although ergodicity is strongly indicated
(see Sec. III). Hopefully, publication of these results
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will stimulate others to prove (or disprove!) ergodicity
of the polygon model.

Il. A FEW ERGODIC PROPERTIES OF THE POLYGON
MODEL

The model is defined in Sec. 1. It is a conservative
Hamiltonian system with H(p,, p,) = (of + p?)/2m, where
p;=mdq,/dt (i=1,2). Definitions: “Configuration space”
R is the set of all points (g,, ¢,) inside or on the boundary
of the polygon. The set I' =QXR? is “phase space,” with
points denoted (gy, g5, Py, P2). The “energy surface” I'(E)
means all (g,, g2, p1,p,) € T which satisfy H(p,, p,) =E.
The “momentum phase angle” ¢ means the angle which
the line from the origin to the point (p,, p,) makes with
the p, axis in momentum space, so that

&Py, p2) = tan™ (p,/p,) € [0, 27). (2)

“Reduced phase space” means the cylinder X =@

%[0, 27) (base @, height 27), with points labeled x

=(¢1, 42 ¢). Any moving phase point is confined to a
single I'(E); we will henceforth restrict our attention to
the motion on I'{E). This motion can be described in
terms of the motion of the “reduced phase point” x
=(q;, g2 $) € X, since the mapping from [(E) to X is
one-to-one. The flow in X will be represented by the
one-parameter group of transformations T i.e., T'x
means the reduced phase point at time ¢ corresponding
to the initial (at #=0) point x;  may be positive or nega-
tive; if the atom hits a vertex at time #,>0 ({,<0), T'x
is undefined for ¢ > ¢, (¢ <f{;). The complete path in X
passing through x at t =0 is denoted P(x}), i.e., P(x)

92

FIG. 1. The polygon model, for
the case n=5, The dashed line
is a portion of a path.
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FIG. 2. A portion
of the polygon se-
quence A(x) gener-
ated from the point
x={g, &, ¢) by
the polygon Q. The
dashed line inside
Q is a portion of
the actual path
Pix) started from
x. The five path-
segments shown
are congruent to
the five segments

q,.9,) of L(x) cut off by @,
Q4,x, ...,
Q@,x.

={T*x :t ¢ I(x)}, where I(x) is the time interval [general-
ly (=, ©)—see Theorem 1] during which T*x is defined.

General description of the motion in X: Starting from
x, T'x, moves at speed (2E/m)'/? across the plane ¢
= ¢, along a line whose angle with the ¢, axis is
tan"}(g,/q,) =tan™ (p,/p;) = ¢o; when T'x, runs into a side
of the cylinder X, it instantaneously jumps to a new
plane ¢ = ¢;, where ¢; is determined from ¢, by the law
of reflection; Ttx, then moves across the plane ¢ = ¢,
in the direction ¢,.

The construction in Fig. 2 (shown for the special case
n=23) is helpful in analyzing the flow in X: Draw ; for
any initial point ¥ =(gy, g5, ¢), draw the ray L(x) from
(g1, g2) in the direction ¢; reflect @ across the side
through which L(x) passes, and call the reflection
Q(1, x); repeat this operation on (1, x), obtaining @(2, x),
etc. ; thus we obtain a sequence A(x) ={Q(, 0}z,
(where Z, means the positive integers) of oriented poly-
gons along the ray L(x). The union A=U,c A(x) of all
these sequences is an (overlapping!) array of oriented
polygons generated by @ along all possible rays L(x)

(x € X). This “array A generated by @” is contained in
the “complete array A generated by @, ” defined as the
set of oriented polygons obtained by reflecting @ across
each of its sides, then reflecting each of these reflec-
tions about each side, etc. That is, an oriented polygon
Q' is an element of A if and only if Q' can be obtained
from @ by some sequence of reflections about successive
sides.

Study of Fig. 2 reveals that the portion of P(x) lying
between bounces ¢ and 7+ 1 is congruent to that portion
of L(x) cut off by @(i, x) € A(x). Thus we can study the
polygon models by studying the properties of rays (“free
particle paths”) passing through the various sequences
A(x)C AC A generated by @. Note that A is countable,
because A is.

Define the sets ®,(qy, ¢;) [0, 27), and ®,(qy, g5)
cfo, 27), by

@,(q1, 92) ={¢ : P(q1, g5, ¢) hits a vertex]},
q’p(qh QZ) ={¢ :P(qu G2 ¢) is periOdiC}§

these sets consist of the angles leading, respectively,
to vertex collisions and to periodic paths, starting from
(41, ¢2). Similarly, we define X,CX and X, X by

X, ={x:P(x) hits a vertex},
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X,={x:P(x) is periodic}.

Theovem 1: (a) ®,(qy, g;) and $,(qy, g;) are countable,
V (g5, g2) € Q; (b) X, and X, are Lebesgue measurable in
X, and both have measure zero.

Proof: Let ¢,(q1,qz, D) be those elements of ®,(q,, g5)
leading to paths which hit a vertex in a distance (mea-
sured along the path) < D; similarly, define X, (D)CX,.
Let &,(q1, 42, D) be those elements of ®,(q;, g,) leading
to paths having “periodicity length” (distance, along
the path, after which the motion repeats) <D; similarly,
define X,(D) CX,. If we can show that &,(¢;, g5, D) and
®,(¢1, 42, D) are countable, we will have proved (a),
since

q’v(qu Qa) =U ti’v(ql: 92 D)= U q’u(ql: q2s D)
D>0 €z,
is then a countable union of countable sets, and similarly
for &,(qy, g;). Similarly, if we can prove that X, (D) and
X,(D) are measurable and have measure zero, we will
have proved (b). Define
A(qu 42) = U A(Ch, 92 ¢);
o (0,2r)
and let A(g,, g5, D) be those polygons in A(g,, g;) which
are inside the circle of radius D centered on (g4, ¢5).
Now P(x) hits a vertex in a distance <D if and only if
L{x) (see Fig. 2) hits one of the vertices in A(gy, ¢,, D).
But A(g,, g5, D) is countable and hence possesses only
countably many vertices, and so ®,(qy, g5, D) can contain
only countably many elements. Similarly, P(x) is perio-
dic, with periodicity length <D, if and only if L(x) pass-
es through a point (g1, g5) € Q(, x) € Algy, g5, D), where
Q(, x) has the same orientation as @ and where (g1, g5)
€ @4, x) is congruent to (g1, ¢;) € @. But A{g,, g5, D) pos-
sesses only countably many such congruent points so
®,(g1, 45, D) is countable. This proves (a). Define
A(D)= U A(ih, 2, D)?
@1 @2)=Q
i.e., A(D) consists of those elements of A lying within
distance D of @. Then A(D) is countable. Thus, the ver-
tices in A(D) are countable; label them (gy, g5;) (i
=1,2,---). In order that L(x) pass through (g, g2;)
[i.e., in order that x be in X,(D)], it is necessary and
sufficient that x = (g, g5, ¢) satisfy the two conditions

(925 = a2)/(q1; = q1) =tang , (q1; - q1)* + (g5 = q2)% < DA,

For each j, the points x obeying these conditions form

a two-dimensional measurable set, of measure zero,

in X, Thus X,(D) is the countable union of sets of mea-
sure zero, and so X,(D) is measurable and has measure
zero. Similarly, in order that x=({(gy, ¢5, ¢) be in X, (D),
it is necessary and sufficient that L{x) pass through a
point (g4, g;) congruent to (g1, g,), where (g1, ¢, is ina
polygon Q(, x) € A(D) which is oriented in the same way
as @. Study of Fig. 2 reveals that, for each correctly
oriented Q(i, x), the set of such x has fixed ¢ and covers
a two-dimensional measurable region in @. But any such
set is measurable and has measure zero in X. Thus,
X,(D) consists of finitely many measurable sets, each
of measure zero, and so X,(D) is measurable and has
measure zero. This completes the proof.

Definitions: An “integral of the motion” (or simply
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“integral”) in X is any phase function f{x) (domain X)
which (except possibly for a set of measure zero in X)
is constant along every path P{x) in X. A “measurable
integral” means an integral f(x) which is Lebesgue mea-
surable. An “integral surface” means a surface X' CX
such that P(x) C X’ whenever x< X', An “isolating inte-
gral” means an integral f{(x) such that, for every x,cX,
the integral surface {x : f{x) =f(x,)} has at most a finite
number of sheets in the neighborhood of every x = X.
The “number” of (unrestricted, or measurable, or iso-
lating) integrals means the number of functionally indé-
pendent integrals. Extending these definitions to the full
phase space I', we see that H{q,, q,, b1, P, is an isolating
integral in I’ with integral surfaces I'(E), We would like
to know if there are others, i.e., we would like to know
if there are isolating integrals in X. A “rational polygon”
means any polygon having every interior angle a rational
multiple of 7; an “irrational polygon” is one which is not
rational, i.e., having at least one interior angle an ir-
rational multiple of 7.

Theorem 2: If  is a rational polygon, then H precise-
ly one isolating integral in X. The corresponding iso-
lating integral surfaces are finite sets of cross sections
of X, each cross section lying parallel to @. More pre-
cisely, each integral surface X(¢)CX is of the form
X(¢)=QXx®(¢p), where (for every ¢) &(¢)C[0,2n) isa
finite set of phase angles.

Pyoof: If @ is rational, then the complete polygon
array A ranges over only a finite number of different
orientations. Thus {cf. Fig. 2) all paths started in a
given direction ¢ [regardless of the initial configuration
(g1, g,)] must have their phase angles ¢(#) restricted to
the finite set ®(¢), defined as the set of phase angles
obtained by drawing lines at orientation ¢ through every
element of A, and then reorienting that element to bring
it into congruence with @ so that our line now has direc-
tion ¢’ € (¢). Any polygon Q' A may be considered to
be the “generator” of A, i.e., we can obtain A by start-
ing with any Q' cAand performing reflections. Thus,
any path P(qy, ¢4, ¢') having ¢’ < ®(¢) must have all of its
phase angles in &(¢). That is, X(¢)=QX®(¢) is an in-
tegral surface. Note that we are not asserting that every
¢'c ®(¢) is actually realized on a single orbit (this
property is indicated, but not proved, by the computer
calculations of Casati and Ford®; T have been unable to
prove this property). The surface X{¢) is isolating since
it has only a finite number of sheets in X. Thus, there
exists at least one isolating integral in X, Now suppose
there existed a second isolating integral g(x). Then
every path P(x) would lie on the intersection of one of
the surfaces X(¢) with one of the isolating surfaces
g(x) = const, and hence P{x) would consist of a finite
number of finite line segments and therefore be periodic
[unless P(x) ran into a vertex]. But this contradicts The-
orem 1, so that there cannot exist a second isolating
integral. This completes the proof.

We can describe the surfaces_X(¢) in considerably
more detail. Divide the array A into a subarray A, con-
sisting of polygons obtained from @ by an even number
of reflections (these polygons differ from @ by only a
rotation and a translation) and the subarray A_ consist-
ing of polygons obtained from @ by an odd number of re-
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flections (these differ from @ by a rotation, a transla-
tion, and a reflection). Correspondingly, the set &(¢)
breaks up into two sets,

(o) =2.(0)U 2._(9), &)

which are either identical or disjoint (depending on the
value of ¢). Figure 2 then reveals that

q’+(¢) = q’a»(o) + ¢, é-(d)) = @_(0) - ¢, (4)

i.e., any set ®,(¢) is just a translate (through + ¢) of
4,(0). The set A, is generated (via even numbers of re-
flections) from any one of its members Q' EK‘, and
similarly for A_. Referring to Fig. 2, we then see that
any pair of “positive” sets ®,(¢) and ®,(¢") is either
disjoint or identical, and similarly for the “negative”
sets:

$,(9)N &,(¢") =0 unless d,(¢)=2,(¢",

@ (p) N ®(¢)=0 unless &_(p)=d_(¢).
It should also be noted that

pcd(p) and - cd_(o). (8)

For the rational models, &.(¢) and ®_(¢) each contain
the same (finite) number of elements; call this number
N. Properties (4) and {5) then imply that ¢.(¢) and ®_(¢)
are each equally spaced, i.e., adjacent members [of
®,(¢), say] are separated by the fixed distance d=2n1/N.
This fact, coupled with (6), implies that

¢0(¢):{¢5d+¢; 2d+¢7 oy (N—l)d+¢})
o (¢)={-0,d-¢,2d-¢,...,(N~1)d- ¢},

where each element is taken mod 27, Now that we know
something about the structure of the set &(¢), it is not
difficult to write down the corresponding integral of the
motion. In fact, there are any number of simple func-
tions f,(x) = f,(¢) (function of ¢ alone) which are constant
on a given surface @ X ¢(¢) and different on different
surfaces. One such function is

fold) = cos*(Np/4) + sin*(N¢ /4). (8)

The function f,{¢{p1, ps)), with ¢(py, p,) given by {2) and
with some appropriate integer N, is an isolating integral
of any rational polygon model.

(5)

&)

Most of the preceding properties of X(¢) also go
through for érrational models, except that X(¢) is now
everywhere dense and hence nonisolating. For the irra-
tional case, Ais countably infinite, and the orientations
of the various polygons in A are dense in [0, 27). Thus,
along any path P(x), the phase angles are restricted to
a countably infinite set ®(¢) which is dense in [0, 27).
Furthermore, since any @' c A can be considered to be
the generator of A, any path P(gs, g5, ¢”) with ¢’ < (¢)
must have all of its phase angles in &(¢). That is, the
everywhere-dense “surface” X(¢) =QX&(¢) is an inte~
gral surface in X. The array A again breaks up into
A, and A_, and the corresponding (dense} sets @.(¢) and
& _{¢) again have the properties (3)—(6). We now show
that there exists no measurable integral describing the
surfaces X(¢).

Theorem 3: For any irrational model, the (nonisolat-
ing, everywhere-dense) integral surfaces X(¢)=@Q
X ®{¢) correspond to a nonmeasurable integral. More
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precisely, any f{x) which is constant on each X(¢) is
either nonmeasurable, or else f(x) is constant a.e. in
X.

Proof: Assume f is measurable and constant on each
X(¢). Since X(¢) =QX&(¢), f depends on ¢ alone. By
(3), f(¢) is constant on &,(¢)U &_(), and hence is (in
particular) constant on each @,(¢). Properties (4) and
(6) imply the “periodicity property” f¢ +4a)=5(¢)
Vac $.(0) and V¢ [0, 21). Define

F(¢)= [,® fl¢") do’ (9

and partition [0, 27) by means of a net having the constant
interval width A, where A< $,(0). Letting X be the num-
ber of complete intervals in [0, ¢), we have

K
F@)=2 [atafef)de’+ Jes Ao do'

=K [2fo ) do'+ [Ear(e") de’. (10)

Since €,(0) is everywhere dense in [0, 27), we can let
A~ 0 while maintaining the condition A« &,(0). By taking
this limit, (10) implies that the ratio F(¢)/F(27) is ¢/
27, Thus F(¢) =@ F(2m)/27, and so dF/c¢ = const. But,
by (9), dF/d¢ =f(¢) a.e. in [0, 27). Thus f(¢) =const a.e
in X. This completes the proof.

Thus the polygon models provide an example of an
integral which is isolating for some models and which
becomes not only nonisolating but also nonmeasurable
for the remaining models. Our second integral f is an-
alogous to the fhivd integral 6 for the anisotropic two-
dimensional harmonic oscillator; the oscillator always
possesses two isolating integrals E; and E, (the energies
associated with ¢; and ¢,), along with a third integral 6
which is isolating only if the frequency ratio wy/w, is
rational ; for irrational wy/w, 6 becomes nonisolating.

I11. DISCUSSION

To proceed with the analysis, we need to study the
flow on the integral surfaces X(¢). Considering for the
moment only the “simple” case of rational interior an-
gles, the Poincaré recurrence theorem plus the finite
separation of the different sheets of X(¢) implies that
any trajectory passing through a given sheet of X(¢) will
keep returning to the same sheet. Study of Fig. 2 then
shows that every sheet (the kth, for instance) is the
union of a countable (and perhaps finite) set of “zones”
such that each trajectory passing through the ¢th zone
of the kth sheet gets shifted by a characteristic amount
w; upon returning to the kth sheet. Using this fact, the
question of the ergodicity of the flow on X(¢) may be
reduced to the question of the ergodicity of a discrete
“interleaving” transformation T: [0, b) - [0, b) {on the
boundary of the kth sheet) having the form Ty =y + w,
(ve Z,), where the zones Z; =[a; 4, a;) are intervals
forming a partition of [0, ). The boundaries a; of the
Z,;, as well as the shifts w;, are dependent on the model
and on ¢. Katok and Stepin® have analyzed the interleav-
ing transformation for the particular case of three zones,
and found it to be ergodic for almost every choice of the
two zone boundaries a;, a,. Thus it seems likely that the
transformation 7 [and hence the flow on X(¢)] is ergodic
for almost every ¢, provided the number of zones is
finite. For the rational models the flow is obviously not
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ergodic on the full energy surface X, since each phase
path is restricted to one isolating surface X{¢).

Turning now to the irrational case (i.e., the “general”
case, since the rational polygons form a “set of measure
zero” among the set of all polygons), things are even
more complicated since each X(¢) has an infinite num-
ber of sheets. The “vanishing” of the second integral
f(x) in the irrational case (Theorem 3) makes it seem
likely that the flow is ergodic on the full energy surface
X (cf. Lewis’s theorem®).

A primary reason for studying simple classical mech-
anical models is to shed light on the general problems
of statistical mechanics. In this regard, the question of
whether or not a system is mixing is more important
than the question of ergodicity, since it is mixing sys-
tems, rather than merely ergodic systems (mixing im-
plies ergodicity but not vice versa®:®), that have the
“irreversibility” properties which one desires for sta-
tistical-mechanical models of realistic systems.?

It appears that the irrational polygon models are mix-
ing (the rational models cannot be mixing on the full en-
ergy surface since they are not even ergodic). The in-
tuitive argument is as follows: The essence of mixing
is the splitting or stretching of an initial volume ele-
ment on the energy surface, in such a way that the ele-
ment gets distributed around the entire surface. Let us
follow the development, in the reduced phase space X,
of a small volume element VC X, For an irrational poly-
gon model, the moving element 7° VC X will eventually
be split into two parts, when some point in 7*V runs
into a vertex. Looking at Fig. 2, it is difficult to see
how these two parts could ever reunite for irrational
models, since (after splitting) the two sequences
{Q(, 9}z, and {Q(F, x )}z, for the two parts appear to
be disjoint. Thus, the splitting process will go on in-
definitely, until 7°V consists of small fragments dis-
tributed (hopefully in a uniform fashion) throughout X,

On the other hand, the rational models may be non-
mixing even on the two-dimensional surface X(¢), even
though these models appear to be ergodic on X(¢). This
is certainly true for the two-body hard point gas with
equal masses (i.e., the isosceles right triangle model)
and for any other polygon model for which A is nonover-
lapping: study of Fig. 2 shows that if Ais nonoverlapp-
ing, a two-dimensional area element started on a single
sheet of X(¢) will split up (onto two or more sheets)
only briefly upon hitting a vertex, and then immediately
reunite on a single sheet. It is possible that similar be-
havior occurs for all rational models, the only differ-
ence being that several wall-collision times are re-
quired before the area element reunites on a single
sheet of X(¢).

The irrational polygon models do not appear to be C-
systems, ? i. e., the mixing process seems to occur with
less-than-exponential rapidity. The intuitive argument
is as follows: We again need to follow the progress T'V
of a small element VCX. The moving element remains
essentially undistorted (except for a slight twisting and
stretching due to the fact that points at different ¢ move
in different directions) until it hits a vertex. The time
7 at which 7'V hits a vertex should be inversely propor-
tional to the mean diameter of the projection of 7%V onto
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@, since if this mean diameter is (say) halved, then
T'V must go through roughly twice as many wall colli-
sions before finally hitting a vertex. Thus, 7 is inverse-
ly proportional to the square root of the area of the pro-
jection of T*V onto @, When T*V hits a vertex, it splits
into two pieces T°V, and T*V, which (cf. Fig. 2) achieve
their maximum separation (in X) from each other within
one wall-collision time after the vertex collision. Thus,
mixing appears to be due to vertex collisions alone, and
is not due to stretching of single volume elements or
increasing separation between pairs of volume elements
between vertex collisions. I 7 is the time for T¢V to
break into two pieces, and if (as we have argued) 7 is
inversely proportional to the square root of the project-
ed area, then the time for these two pieces to break into
four pieces is roughly V2 7. Continuing this argument,
we see that the time for 7°V to make the transition from
2" pieces to 2" pieces is 2"/27. For “exponential mix-
ing” due to vertex collisions alone, this transition would
occur in time T; for “linear mixing” due to vertex colli-
sions alone, this transition would occur in time 277

— 2" =2"T, Thus, the mixing rate for polygon models
appears to be much slower than exponential, but slightly
faster than linear. This slow mixing behavior has been
observed “experimentally” in the computer calculations
of Casati and Ford, ® who note that a surprisingly large
number of collisions is required before a set of initially
close phase trajectories becomes evenly mixed.

Aizenman® has proven that if a polygon system is er-
godic, then there must exist a finite generating partition
having zero entropy, ® and hence the model has zero en-
tropy® and cannot be a K-system; on the cther hand, non-
ergadic models cannot be K-systems, and so polygon
models are certainly not K-systems. Aizenman’s re-
sult shows that any ergodic polygon system is “deter-
ministic” in the following sense: partition the energy
surface into any finite set of “phase cells” labeled j
=1,2,...,N, and specify the cells j(f) which the system
occupied at the past times {=-1, -2, ..., if the system
has zero entropy, its present and future cells j(#) (¢
=0,1,2,-.+) are then completely determined. That is,
the “coarse-grained past” of any zero-entropy system
completely determines its “coarse-grained future.”
Since only the coarse-grained past and future are acces-
sible to experimental observation, systems (e.g., any
ergodic polygon model) having zero entropy are “experi-
mentally deterministic.” Aizenman’s result also indi-
cates that polygon systems are not C-systems, since
C-systems are “generally” also K-systems. s
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APPENDIX

Configuration space for the two-body hard point gas is
the isosceles right triangle 0<g; <g,< L. In these vari-
ables, the model is not a polygon model since the con-
figuration point does not obey the equal -angles law upon
bouncing from the hypotenuse. Define new canonical va-
riables v, w; (i=1,2) by v;=q; V;, u;=p;/Vm;. After
a two-body collision, the in1t1al and final momenta are
related by

uy 8 (1= 8972\
uy ) \(1-g% w )

where B= (my — m,)/(m, + m,). Examination of the eigen-
vectors of the collision matrix reveals that this trans-
formation is a reflection in momentum space across the
line which makes an angle tan= [(1-8)/(1 +8)[' /2= 6 with
the #, axis, where ¢ is defined by (1). In the new vari-
ables, the velocity vector is parallel to the momentum
vector. Thus, not only the momentum vector, but also
the velocity vector, reflects across the direction ¢ upon
collision, so the motion obeys the equal-angles law upon
collision. It is easy to see that the model also obeys the
equal-angles law when either particle bounces from a
wall. Between bounces, the configuration point moves
ina stralght line with constant speed (3% +52)! /2

=(uf +ud)' /2= (2E)'/?, where E is the total energy. Thus,
we have proven that the two-body hard point gas is canon-
ically transformable to a polygon system with configura-
tion space being the right triangle 0< vy /Y7, <v,/V i,
<L [i.e., the right triangle with interior angle ¢ given
by (1].
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We present a detailed analysis of the separation of variables for the time-dependent Schrodinger equation

for the anisotropic oscillator with a 2:1 frequency ratio. This reduces essentially to the time-independent one,
where the known separability in Cartesian and parabolic coordinates applies. The eigenvalue problem in
parabolic coordinates is a multiparameter one which is solved in a simple manner by transforming the system
to Bargmann’s Hilbert space. There, the degeneracy space appears as a subspace of homogeneous
polynomials which admit unique representations of a solvable symmetry algebra s; in terms of first order
operators. These representations, as well as their conjugate representations, are then integrated to
indecomposable finite-dimensional nonunitary representations of the corresponding group S;. It is then shown
that the two separable coordinate systems correspond to precisely the two orbits of the factor algebra s;/u(1)
[u(1) generated by the Hamiltonian] under the adjoint action of the group. We derive some special

function identitites for the new polynomials which occur in parabolic coordinates. The action of S; induces a
nonlinear canocical transformation in phase space which leaves the Hamiltonian invariant. We discuss the
differences with previous works which present su(2) as the algebra responsible for the degeneracy of the two-

dimensional anisotropic oscillator.

1. INTRODUCTION

In this paper we will examine the quantum two-dimen-
sional anisotropic harmonic oscillator with a 2:1 fre-
quency ratio. This system, though particular, is in-
teresting in two respects: First, the time-independent
problem is known to separate in two coordinate sys-
tems, Cartesian and parabolic and, second, its energy
levels exhibit a degeneracy pattern which has been at-
tributed to a symmetry algebra. Both features will be
shown to be related through the treatment of the prob-
lem in Bargmann space.

Winternitz ef al. have shown! that there is a one-to-
one correspondence between second-order differential
operators which commute with quantum Hamiltonians
H of the standard type [i.e., — A+ V(x;,x,)], and
separable coordinate systems for the Schridinger equa-
tion, that is, there exist functions vy(x, x3), vo(x, %9)
such that the time-independent Schrddinger equation
separates into two differential equations, one in v; and
one in z,. Reduced to a canonical form, these v’s can be
made to correspond to one of the four orthogonal co-
ordinate systems in two-space: Cartesian, polar,
parabolic, or elliptic. The 2:1 anisotropic oscillator,
in particular, was shown to separate in Cartesian and
parabolic coordinates with the corresponding “separa-
tion” operators S; and S, commuting with H. Section 2
recapitulates these developments in the light of the gen-
eral procedure of separation of variables”? involving
the time, and shows that the time-dependent problem
can be reduced to a study of the time-independent one.
The wavefunctions of the system in parabolic coordi-
nates are not known special functions.

In Sec. 3 we show that the introduction of Bargmann
space4 provides a very convenient tool for finding the
eigenfunctions and spectra of the pair S, and H. The
parabolic basis eigenfunctions are seen to be given in
terms of new orthogonal polynomials whose coefficients
are given by a three-term recursion relation. The
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polynomials and their eigenvalues are tabulated up to
the =15 level. These coefficients also give the expan-
sion of the parabolic basis eigenfunctions in terms of the
Cartesian ones and vice versa as well as other special
function identities.

In Sec. 4 we relate the polynomials and degeneracy
pattern to the existence of a solvable symmetry group
in Bargmann space. This group, or more accurately,
its infinitesimal generators are found by looking for all
first-order densely defined differential operators in
Bargmann space which commute with the Hamiltonian.
The representations we find are indecomposable non-
unitary finite-dimensional representations of the sym-
metry group. We also discuss the relevance of the con-
jugate representations. Moreover, the orbit structure
of the Lie algebra is analyzed and it is shown that the
orbits relate to the two separable coordinate systems in
the usual configuration space. We point out that this
connection breaks down for any other rational frequency
ratio,

The solvable symmetry group is a group of nonlinear
canonical transformations of the coordinate-momentum
space which are geomelvical symmetries in Bargmann
space. This is shown in Sec. 5. Finally, in Sec. 6
some conclusions are presented about the relations and
differences between our and former work. >=7 These
question the necessity of unitary representations and of
su(2) in describing accidental degeneracy.

2. SEPARATION OF VARIABLES

Qur first aim is to find all separable coordinate sys-
tems for the equation

U, ., +U

ey * Uy 2.1)

+ilU,— (s +x3)U=0

where U,=08U/9z. The procedure that follows is quite
analogous to Ref. 3 with only slight modifications due to
the potential term. We will thus only give a rough
sketch of the method used in deriving the result (2. 5).
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We look for all coordinate systems described by the
change of variables '

X=X (01,03, 03}, X =Xp(v1,09,03), t=T(vy,0y,73),
2.2)
such that a solution of (2.1) is of the form
Uvy, vy, v3) = expliS(vy, vy, v3) [V, () Valog) Vs(vs), (2.3)

and (2. 1) reduces to three ordinary differential equa-
tions. The function S(vy, vy, v;) is called a multiplier
and can be determined by the analysis. Moreover, the
separation process3 always allows us to choose
t=T(vy,v,,v3) =vg in (2. 2).

For the purpose of finding the separable coordinate
systems of (2. 1) it is useful to consider its symmetry
group. The Lie algebra of this group was determined in
Ref. 8, where the integrated group //, (the two-dimen-
sional harmonic oscillator group) has the structure //,
=R ®{/s, where R, is the group of additive reals, [{/;
is the five-dimensional Weyl group in two-space and »
denotes the semidirect product. The group action given
in terms of the one-parameter subgroups (R, is gen-
erated by R and [{/; by B;, P;, ¢=1,2, and E with
[B,, P,]=ib4Ew,), w;=2, wy=1, is

exp (@ TR)f (%1, x9, £) =flxy, x5, £+ 7), (2. 4a)
exp(iB: P)f(x,, %, 1) = exp[— i (4Byx, sindt + 28y, sin2t)
+ (% sin8t + § & sind#]
Xf{x, — By cosdt, x, — By co82, 1),
(2. 4b)

exp(ia * B)f(xp X2, t)
= exp[i (4 ayx, Sindf + 20,%, Sin2f) + of sin8?
+303 sindt]f(x, - o, sindt, x, — &, 5in2t, 1), (2.4c)

exp(vE)f(xy, %5, 1) = exp(y)fix,, %o, t), (2.4d)

where fe(C”, 1, 44,...,y<R. Now, by a straightfor-
ward calculation following the procedure of Ref. 3, it
can be shown that the only separable coordinates with a
nontrivial multiplier S (i, e., notf a sum of functions of
the individual variables) are those given precisely by
the change of variables induced by the transformations
of the symmetry group (2. 4). Indeed, such transforma-
tions give rise to separable solutions V;{vy), Va{vy)
which satisfy the same ordinary differential equations
with the usual separation in £, i.e., T(v3)=c expiEt,
Therefore, two separable coordinate systems which dif-
fer by a transformation of the type (2.4) are said to

be equivalent. Hence, our problem reduces to the
separation of the time-independent Schriddinger equa-
tion! and we find only fwo inequivalent separable
coordinates:

(i) Cartesian

X =V, Xy=vy, [=0U;, x,%ER; (2. 5a)
(ii) parabolic
% =3 -v}), xp=vyvy, t=vs (2. 5b)

v,€ R, v, R*; thus in what follows we consider the
time-independent Schrddinger equation, viz.
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Hp== Yz = ¥y, + @x] +25)9= E (2. 62)
obtained from (2. 1) through
Ulxy, X4, 1) = expGEL)d(xy, x3). (2. 6b)

Winternitz and collaborators! have characterized the
two separable systems (2. 5) of (2. 6) by the two second-
order symmetry operators

Sc=—10, . +4x3, (2.7a)

(2. Tb)

112‘1

— L 2
SP =X axzxz =X axixz - 28x1 +X1Xg,

corresponding to (i) and (ii) above, respectively. Indeed,
it can be shown that (2. 7) are the only second-order
operators which commute with the Hamiltonian H. Now,
the solutions of (2.1) in the Cartesian coordinate sys-
tem (2. 5a) are characterized by the equations

HY® = EY°,
SC‘PC = ﬁ“ﬂbc,

which give rise to the well-known eigenvalue problem
for the one-dimensional harmonic oscillator with eigen-
functions normalized in the usual Hilbert space norm

/ 2(IR?) given by

(2. 8a)
(2. 8b)

¢§1n2(x1; %)
=[2"*28 2y Uy 1 T Yexp[~ 22 - %yz]H,,i(\/fxl)H,,2 (x5),
(2. 9a)
with eigenvalues
E=4n+2n,+3=2n+3, ny,ny,n=0,1,2,---, p=4n+2,
(2. 9b)

Notice that the energy level labeled by » has degeneracy
[n/2)+1, where [7] is the integer part of 7.

The solution of (2. 1) in parabolic coordinates (2. 5b)
are

HYP = EYP,
Spf =P,

These equations give rise to / 2(IR?) solutions yf, (x;, x3)
which are products of the form

(2.10a)
(2. 10b)

B (61, %3) = Gy (V1) Dy (1222), (2.11)
where ¢(v) is a solution of the equation
Gop+ 21+ Ev? —15)¢ = 0. (2.12)

We note that since the measure in parabolic coordinates
is

dix =dx, dxy = W} + v3) dvy duy, (2.13)

and (2. 12) depends on both X and E, the eigenvalue
problem is a (coupled) multiparameter one. However,
we know the value of E from the Cartesian separation
and we can use (2. 10b) to derive a recursion relation
for the overlap functions between the two bases. Then,
since the degeneracy for each # is [n/2]+1, we look for
the recursion relation to be cut off. Rather than im-
plement this procedure here, in the next section we will
analyze the system in Bargmann’s Hilbert space where
our problem reduces to a single Sturm—Liouville prob-
lem and the degeneracy of states appears simply as a
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subspace of homogeneous polynomials. It is further
noticed that (2. 12) is the equation for an anharmonic
oscillator with a — w%? + 0% potential, and can be related
to the confluent Heun equation. ®

Equations (2.19) also exhibit an interesting discrete
symmetry: It is easily seen from (2. 6a) and (2. 7b) that
under the parity transformation x; — - x;, H— H while
Sp — — Sp; hence if ¥f(x,, x,) is a solution of the eigen-
value problem (2. 10) with eigenvalues E and X then
PE (= %y, X3) = Oy (V9) by (ivy) is also a solution with eigen-
values E and — . In addition, Eqs. (2.10) are invariant
under x; —~ — x5 (v; — —v,) and the parity properties of
the Cartesian basis (2. 9a) are well known.

Note: Our Eq. (2.12) has been recently treated in an
interesting work by Truong through the use of harmonic
analysis on the Weyl group. [See T.T. Truong, a Weyl
quantization of anharmonic oscillators, J. Math, Phys.
16, 1034 (1975). ]

3. SOLUTION IN BARGMANN SPACE

In this section we shall show that the treatment of the
anisotropic oscillator in Bargmann’s Hilbert space of
analytic functions* allows a simple interpretation of the
degeneracy pattern as well as a reduction for the
parabolic coordinates to a simple Sturm— Liouville
problem. !* For an oscillator of frequency w we define!!
optAof the canonically conjugate operators x and ﬁ (with
[x, P] =il) »

%= Qw) 127 +i?) (8.1a)

p=(2/w) 267+ D), 3. 1b)

so that 7 and £ also constitute a canonical pair ([7, Z]

=ill). Under (3.1), the Hamiltonian becomes
H, =P+ 0B =20(int + 3). (3.1c)

Upon introducing a scalar product over the complex
plane @

(@) =w! 2t [ du,()f)*gm), (3. 22)
where
d*py(n) = exp[- w|n|*d%), d’n=dRendImy, (3.2b)

fand g are analytic functions in 5 over € of growth
2, w/ 2), and completing with respect to the norm in-
duced by (3. 2) we obtain the Bargmann space Fo-
Bargmann has shown that the operators given by
(8.1a,b,c) are self-adjoint in 7, defined with the
domains

D(O)z{fe}w:Ofejw}; (333-)

where () is one of the operators (3.1). Thus in 7, we
have the representation

£ =nfm), Eftn) =~ iaftn)/om, (3.3b)
with the Hilbert space adjoint
1 =if/w, &'=iwn. (3.3¢c)

The unitary mapping between / *(IR) and 7,, is given by
F@)=(Au ) = [ dxA@, x)fx) (3. 4a)

with the inverse
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1) = (A ) = [ A, x)*F () (3. 4b)
where
A, x)=w' 21 explw(- 3x2 +V2an - )],  (3.4c)

and f € 7, f€/*R), and the integrals are understood
to be in the sense of limit in the mean.

We can now build the space 7= 7(€?) with the measure
du?dp? and the two-dimensional Hamiltonian which is
the image under the unitary mapping A= A,®A, of the
Hamiltonian (2. 6a) and the sum of two Hamiltonians
(3. 1c) with w;=2, wy=1, Hence in 7 our Hamiltonian is

(3.5)

Now the simple form of (3. 5) allows us to immediately
solve the two-dimensional eigenvalue problem

ﬁan = Enim an = %.(711, 772)-

We find by the method of characteristics and the fact
that Hy, < 7 the general solution with (2. 9b),

Talng, Mg) = M3 Palny/13),

where P, is a polynomial of degree [#/2]. Hence the
degeneracy of states in 7 makes its appearance by the
simple fact that the solutions of (3. 6) are homogeneous
polynomials P, of degree [n/ 2]. This polynomial sub-
space °, maps under the Bargmann transform A given
by (3.4) onto all / 2(R?) solutions of the Schridinger
equation (2. 6a) with fixed energy E,. In the next sec-
tion we will find a group of transformations [not SU(2)]
which maps the polynomial subspace 2, 7 defined by
(3. 7) into itself. We also emphasize here that the above
analysis is quite general and applies to any anisotropic
oscillator whose ratio of frequencies is rational, al-
though there will be no connection with separable co-
ordinate systems.

H=dn;3, +2m2,,+3.
(3.6)

8.7

In the Cartesian basis described by the self-adjoint?
operator

Sc=AScA™ =4n;9, +2, (3.8a)

along with (3. 6) we obtain the orthonormal eigenfunctions

0, (13, m2) = (g Iy 1)1 /227 2 (3. 8b)

with E given by (2. 9b). Note since n=2n, +n,, it follows
that ¥¢, € P,. Moreover, under (3.4b) the eigenfunc-
tions (5.28b) map onto the usual harmonic oscillator
eigenfunctions (2. 9a).

For the parabolic coordinates we find the operator
Sp=AS,A™ = Ven 8y, + 728, /Y. (3.9)

which is self-adjoint on the domain 0(731 X7%) with the
[)’s given by (3.3). From the operator S, in (2. 6b) one
expects in general upon inserting (3. 1) that S, be a third
order operator in 7. It is a pleasant feature of the
mapping that the third order terms cancel. The eigen-
value problem for (3.9) on /2, upon introducing in (3. 7)
the change of variables

z=ny, u=ny/n3, (3.10a)
yields the differential equation
4V 2uP Py () + [- 2V2(2n - 82 + 1/V2 P, ()
C.P. Boyer and K.B. Wolf 2217



+[V2n = 1) - 3] Py (m) =0, (3.10b)

where we have labelled the eigenvalue X of §P through
the index [ in a fashion which will be described below.
Expanding the polynomials P, (¢} as

In/23
P ()= 2 ",

m=()

(3.11)

we find three-term recursion relation for the
coefficients

1

s (m+ Dpity = M PR+ V2@m = n = 1)2m —n = 2)p7, =0.

3.12)

We remark that the coefficients 7' have been chosen to
be real and such that ;{)3‘ > 0. Equation (3. 12) allows us
to solve the eigenvalue problem for A, when we require
that p¥} 5,4 = 0. This problem is equivalent to diagonal-
izing a square tridiagonal matrix of dimension [n/2]+1.
The resulting eigenvalues A, can be labelled by the index
I running from - 3([n/2]+1) to ((n/2]+1) in integer
steps and such that Ay <Ay, iff 1y <. The motivation
for such a labeling stems from the parity properties
discussed at the end of the last section. Clearly the in-
version xy —~ — x, implies 1, —~ -7, or equivalently u

—~ —u; and again if under §P, A; is the eigenvalue of
¥E(ny,m,), then — X, is the eigenvalue of P (-1, n,); and
if P,,(u) satisfied (3.10b) with X,, P,;(~u) will satisfy
the same equation with — A;. Our labeling convention for
A, then implies that = 2, =2_; and P, _;{u)=P,;(—u). The
eigenvalues A; appear thus in symmetrical pairs. When
[#/2]+1 is even, the I’s are half-intergers, while when
[n/2] +1 is odd, the I’s are integers and »;=0 is among
the eigenvalues. We point out that although the label I
resembles a “magnetic” quantum number suggesting an
su(2) symmetry algebra for the system, no such con-
struction has been made.

The eigenvalues A; and the properly normalized co-
efficients p™ for (3.11), (3. 12) for the first 15 values
of n have been computed and collected in Table I. We
will refer to P, (u) as parabolic polynomials. The en-
tries of this table also give us the needed information
about the expansion of the parabolic coordinate solutions
in terms of the Cartesian basis, since from (3, 7),
{3.8b), and {3.11)

- [n/23
Un s, ) = 2 pRnTnE™"
n/21
= L (2l le= 2m) ] LY o, me)-
(3.13)
Choosing 7%, (1, 7y) to be normalized in 7, we find
n/21 s
%‘0 [27™m! (n - 2m)! | pripn =6, 0. (3.14)

The expansion inverse to (3. 13) is easily obtained and

reads
[n/21+1

22 anl%:z (11, m2)

o neam (1, m2) = [27™m ) (0 = 2m) 1]1/2
1==lnf21-1

3.15)

Again from the orthonormality properties we obtain
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/2141

2"mml (- 2m)! o
1=wln /23-1

Dok Pp =8, . (3.16)

The solutions (3.10) of (3. 11) are instrumental for the
solutions (2. 11), ¢, (v), of (2.12) in the following man-
ner: Transforming (3. 10) to its standard form, we find
the latter to be identical with (2. 12) so that its solutions
are

G 0) ~0" exp(- v*/4) P,y (2207 T),

upon demanding the correct asymptotic properties for
¥5. Tt is emphasized that we have constructed poly-
nomial solutions of the differential equation (2.12). The
advantage of the Bargmann space treatment is now
manifest: Through the unitary transform (3. 4) we have
reduced the coupled multiparameter eigenvalue prob-
lem (2.10) to the single Sturm—Liouville problem (3. 10)
whence upon transforming back and using (3.17), we
have

Zp:’l (1)1, Uz): Co1 (1)1112)" exp[_ %(vi + vg)]Pnl ([2\/51);;]_1)
X P,y (= [2V302]),

(8.17)

(3.18)

where ¢, is the normalization coefficient with respect
to the measure (2.14) given by

[n/4]
C -2_~1/29n+(n n (2)! (n — 4k)!
L"’—(P[,ll/zy) 2y~1/29n+0(n) /4 Z;O p"”l’(_l)kk!(n/Z]—Zk)!
{3.19)

where o(n)= (-~ 1) and can be calculated with the use of
the Table I,

Writing the transform (3.4a) explicitly, we find the
integral identity

S av, [T dv, (0 + 03w, ) expl - i+ v+ V2008 -0,
+ ‘/Ez;lvznz]ﬁu ( [Zﬁuf]'l)Pnl (-~ [2x/§vg]-1)
=[c,,V2/7 ] exp[nZ + $0E1BP,, (n,/n3).
BEquation (3.4b) yields
| e @ P, m5P,, (0, /13) exp{~ 2 [ny |2 = |7, ]2 - n¥?
— Inp? 4 V2(0% — D)t + V2 0,0,m%]
=42, (w0, P, (2V2031)P, (- [2V202] ).
(3.20b)

(3.20a)

Moreover, applying the unitary transform (3.4) to the
expansions (3.13) and (3. 15), we find the expansion
formulae

In /21

2 20}~ v, 00)

= g /2gn /21 e, (v )y P, (220 HP, (-~ [2\/51}3]'1)

(3.21)
and
m/2141
e D e, P3P, (- VI
=[a'/2n/2m-1 A t (n = 2m) | ], 27 20} - 02D, (0,2,).
(3.22)

These formulas aliowed us to caleulate ¢, in (3.19) by
evaluating (3.21) for even » at x=0 and for odd =,
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TABLE 1. Eigenvalues and eigenvectors for parabolic polynomials. The eigenvectors p%*! for fixed n and [ are listed from top to
bottom as m runs from 0 to [n/2 +1], respectively.

Level Eigenvalue Eigenvectors Level Eigenvalue Eigenvectors
3\ nyxl nytl
+] m Pm
n=2 I=1/2  £1.414214 5. 000 000 X101 n=16 1=5/2 +16.61347 1,704169 x10™
+ 1,000 000 + 4,003 944 x1073
2
n=3  1=1/2  +2.,449490 2,886 751 X101 3.169 879 X107
RSP £ 9. 877367 ><1o1
: 1,046 898 X10”
n=4 =1 +4.000000 1.250 000 X1 0t +1,782333 %1072
£ 7,071 068 x10!
5. 000 000 X101 I=3/2 % 8.353982 2.447240 %10
+ 2,891216 X103
= -1 .
=0 0. 000000 1.820 621 zlo-d —4.946 480 XIO-S
(1).232 gzg 10 +1,274183 x10"!
. — 3,021 387 x10-!
n=5 =1 + 5,656 854 5.103104 x102 +1,022969x10!
-1
R 213_1 1=1/2  +2.,050659 2.210812 x10™
. + 6,410 059 X10™
- -2
=0 0. 000000 5.590170 x107! 1.896333 XIO_Q
_4 +4,226254 X10
0.000 000 X10 i
1 118034 2.538089 X10
—-1. + 3,500 1729 x10-!
= = -2
n=6  1=3/2  *+7.538754 i}-ggzzggﬁg_] n=11  I=5/2 +19.22960 4, 608940 X107
. # +1,253390 X107
5. 000 000 X10 )
+1.875925 x1¢! 1197299 %10
. +4.837152 x10-
I=1/2  +1,779658 1.863 390 X102 7.743 018 X102
+ 4,689 812 x102 + 3,416 695 x10%
— 1
N g-gzg 020 e 1=3/2 +10.48809 6.979 429 x10°°
. 946545 X10 +£1,035217 x10°3
- -5
n=7 1=3/2 +£9,579208 6.332 529 X103 0.000000 X10-2
2 +4,969040 X10
+ 8,578707 X10 o
o —~1.842 569 X10
3.151144 X10 +1.490712 xlo-i
+2,791290 x10-1 :
= -5
I=1/2  +2.870326 7. 688 005 X10-3 I=1/2  +£3.197242 7.436 786 X10 ;
- + 3,362 605 X10°
+3.120 757 X10 3
. —7,420250 X10~
—2.595565 X10 2
£ 7,673 029 X10-1 +2, 732428 x10
: 1.249380 %101
-1
n=8 1=2 +11, 78082 2.008449 X103 + 3,315776 X10
+3.3 X102
2 S‘égigg xig_‘ n=12  1=3  +21.97026 1.193308 x10°
: s + 3, 707685 x10™
+ 2,541 743 X10 3
6.102 406 X102 4,184 841 x10~
. +2,109578 X102
=1 +4.605675 2.518940 x1073 4,668927 x102
+1,640688 X102 + 3,698379 X102
—8.762 825 X102 4.761253 x10%
+ 5,183 905 %101
o 183528 x10-t 1=2 +12,78129 1.890156 X107
. + 3,416546 X104
=0 0. 000000 2.010905 x1 03 5.927 794 x10-4
0.000 000 X104 +1,692 769 x102
—1,126107 x10-1 -9.309182 x102
0. 000 000 X104 +1,334035x10™
6. 756 639 X10-1 — 2,952 144 x10?
n=9 1=2 +14.12795 6.007 569 x10 1=1 + 5,093 752 2.029 600 x10°°
+1,200309 XlO': + 1,462 053 X10~
7.665 598 X10~ —-2,152465 x10"3
+ 1,744 409 10! + 1,394 086 x10?
— 3,791 902 x10° 3.416276 X102
=1 +6.356178 8.200 552 x1 0~ +2.179 504 X107
+7.371471 x10°3 1,210221 x101
—~2.591292 ><1o-j 1=0 0. 000 000 1,626 302 X105
+ g.ggfg‘égﬁgl 0.000 000 x1075
=3 ” ~2.146 719 X103
1=0 0. 000 000 8.300199 x10- 0. 000 000 X105
0.000 000 x1¢-3 ~6.010814 x10-2
—5.976143 X102 0. 000 000 X105
0. 000 000 x10-4 —2,404325 %10
5.976143 X107t (continued)
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TABLE 1, (continued)

Eigenvectors

Pr’:’,ﬂ

Tevel Eigenvalue

n=13 =3 + 24,82997
=2 +15,21229
=1 + 6,932454
1=0 0.000000

n=14 1=7/2 +27,80398
{=5/2 +17,77729

2.968235 x10°¢
+1,042292 x10-¢
1.366 953 x10-
£ 8356661 X103
2.415 046 X107
+2,921621 x107°2
9,984215 x10°

4,902 887 x10-°
£ 1,054 779 x10-

3.697447 %x10™
+ 5, 083 554 X107
—4.065197 x10°2
£ 8.950889 x10%
— 4,992 728 X107

5.644 911 X10°%
£ 5. 534254 X107
—6.093177 %10
£ 6.049697 x10™

7.107675 x10"3
+1.155716 X107

1,414 589 x10!

5. 582 380 x10-8
0,000 000 X105
—8.708512 x10
0. 000000 x10
3.135064 x10*
0. 000 000 X104
—2.090043 x10°!

7.114271 x10°7
+ 2,797 386 x10°°
4,204 971 x10™
+ 3,049 722 X107
1.105 699 x10%?
+1.864 007 X107
1.158 708 x10-2
+1.178723 x10-3

1.220946 X107
+ 3,069 567 X107

1.836458 x10™
£1,329819x10°3
~1.572227 x10%
+4,926638 %102
— 4,921 069 %1072
+7.829590%1073

Level

Eigenvalue

Eigenvectors
pn,il
m

1=3/2

1=1/2

n=15  1=17/2

1=5/2

1=3/2

1=1/2

+ 9.040977

+2,273209

+ 30.88805

+20.46843

+11.266 06

+3.470994

1.455154 X10°5
+1,8603541 x10F
—1.458948 x10"¢
+2,259073 x10°
—6.557908 10
+ 4,892627 x10

1,108188 x107t
+ 3,466 912 X107

1.273209 x10-¢
+4,093117 %108
—2.251 448 x10
£ 6,014 597 x10™

9. 648122 x107?
+ 1,967 606 X107
— 8,593 878 x10%
+1.069288 %104

.647271 %1077
.195660 x1078
.225688 x10™
. 036347 %107
. 576218 X103
. 013316 X107
. 706 253 X107
. 666413 x10-3
.929299 x1 077
.479361 x10-°
.120959 x107°
.912478 %10
474195 %107
. 330407 x107%
. 579 068 X102
.483719x107?

.638824 x1077
. 797 598 x10-°
. 022 984 X107
. 634 970 X107
.378486 X107
. 759 614 X102
. 602 422 x10-2
. 972 759 X107

3.701417 x10”7
+1.816924 x10°°
—7.327036 X10°°
+3,088482 x10™*

3.650 857 X107
+1.247904 X107
—4,090263 x107
+9,999164 107

W

M

o BT T i -
=N UIN DO N NO g =
:

L T BT
N e e I I

32/3v,3v, of both sides at x=0, We add that from (3.21)
and (3.22) many / 2(IR?) expansions can be derived for
the parabolic polynomials P,,. To conclude this section
we give explicitly the parabolic polynomials for the

first few » values:
P u)=1,
P)=1,

n=0:
n=1:

n=2:

os

V6
Pio= =5

Py p)=+u+3,

Py ap)=zu+ 1/2\/3’

1
(-—u2+ 12/

Py, )= % (1002 £ 4V 20 + 1),
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(3.23a)
(3.23b)
(3.23c)
(3.23d)

(3.23e)

n=>5:

p

5,0

When written in terms of the variables z,« as (3.10a)
we can perform the z integral and obtain orthogonality
for n as well as a weight function in « which depends on
n. This weight function appears in terms of parabolic

= —\/-23—- (—ltz+ 516)5

cylinder functions.

1
P, )= T501 (12:%+ 8u + 1),

4. ASYMMETRY GROUP IN BARGMANN SPACE

Here we will show how the information of the previous
section can be obtained by studying the group of geomet-
rical symmetry transformations in Bargmann space. We
look for all first ovder differential operators of the form

C.P. Boyer and K.B. Wolf



2

A= E ai(n“nz)ani +b(771, le)

i=1

4.1)

which commute with the Hamiltonian (3.5), i.e., [A, H]
=0. If we further demand that all our symmetry opera-
tors A be densely defined in 7 then the functions a; and
b must be analytic functions of 7, and 7n,, we find

AI:nlanl, A2=7723,,2, Agznganl, Ay=1, (4.2)

with domains ) (4,) and J(4,) given by (3.3) and J(4,)
=/ (n,Xn%). When we disregard the central element
A, we find the three-dimensional solvable algebra'? s,
with Lie brackets

[*419142]:09 [AI’AE]:_AB’ [A2,A3]=2A3' (4-3)
It is easily seen that
H=4A,+24,+ 34,, . 4)

and so we have the structure s, ~u(l1)®s,, where s, is
the two-dimensional algebra spanned by, say, A, and
Ay, and x(1) is spanned by H. Now on the space P of
homogeneous polynomials the representation (4.2) of s,
acts on the normalized Cartesian basis in Bargmann
space, calling 5’,’"5 Ye as

Mman-=2m?
Al(’ﬁ’:'n:?’}'l&)”;', (4" 53.)
Az(ﬁ"'"z(n—2m)¢~>','m (4'5b)
A =[2mn+2 - 2m)n+ 1 -2m)]* /24" . (4.5¢)

This action can be integrated to a representation of the
solvable Lie group S, as

T(g(af%?))f(m, ny)=exp(ad, + BgA,+ YAslf(Uu 7,)
=exp(ad,) exp(BA,) exp(SA,)f(n,n,)
=fle%n, + 32367722: ean)

= e3P (e*%*n,/ni+ 8) (4.6a)
where fe P, a,8,7<C, and
o=y -1)/(a-2p). (4.6b)

The transformations (4.6) form the group of geometrical
symmetry transformations in Bargmann space. The
group composition law is g(a,, 8,, v,)g(a,, B,, ¥s)

=gla,+ a,, B; + B,, ¥;) Where ¥, is related to &, through
(4.6b) and 6,=5,+ e®2"%25 , This yields the representa-
tion matrices

o, (apy)= (@, , T(g(apy))er)
1 (m!(n —2m’)1>1/2

(m —=m")\um’ (n=2m)!

— em'ae(n-zm)ﬂ(\[gé)m-m'

4.m

where 0<m’, m < [n/2] and the matrix is upper-
triangular, & being given by (4.6b). Now since 4, and
A, are self-adjoint on /) given by (3.3), by choosing

a, B pure imaginary, the representation of the Abelian
subgroup generated by them defines a unitary represen-
tation on 7. Of course A4, is not Hermitean (symmetric)
in #, so its integrated group representation is not uni-
tary. Moreover, exp(64,) is an unbounded operator in
7, since functions of growth (2,1) in 5, and ,3)inn,
are mapped onto functions of growth (2,1) in n, and
(4,8) in n,. However, it can be seen easily from (4. 6a)
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that T(g) maps /P, into itself and thus is densely de-
fined on 7. Using the binomial theorem and (4.6a), it
follows that all polynomials /; of degree j < [»/2] form
an invariant subspace under s,. The complement 0, of
PJ_ in 7, is ot invariant under (4.6a), Thus the repre-
sentation (4.6a) of s, on / is indecomposable and non-
unitary with dimension [#/2]+ 1. This is consistent with a
a theorem of Lie which states'? that all finite-dimen-
sional representations of a solvable Lie group over €
are indecomposable. From the point of view of the Lie
algebra (4. 3) this means that we have only a lowering
operator given by A,. It can be seen how another repre-
sentation of the same algebra s, contains a raising
operator: Indeed, consider the operators defined by

(4.8)

where [ (A})=/0(4,). The primed operators (4. 8) form
a representation of s, conjugate to that of (4.2). In fact,
we easily find

AL =[20m +1) (e = 2m)(n - 2m - 1)]1/235"”,,,1.

Aj=-A,, A}==A, Aj=Al=270

Nong?

4.9)

Since A} is a second-order operator, its exponentiation
will be represented through an integral kernel in Barg-
mann space, There is a striking analogy between this
exponentiation and the development in time of the solu-
tions of the heat equation. '* Using this analogy, the
general element of the conjugate representation of S,
can thus be found as

T(g' (@B (n,,M,)= exp(ad) + B4, + yAL (7, 1,)
=exp(6"A3) exp(~ £A,) exp(ad, )f(n,, n,)
= [ [, @un]) py(n)

XK gy (15 T3 Mhy MY (M3, M3), (4. 10a)

where 6’=y(e*"* -1)/(28- @) and the integral kernel is
Kyr(ap) =€XDQ2e7nm* + e, mf* + 26770 ni*?),

(4. 10b)

Finally, it is straightforward to see that the matrix ele-
ments of the representation (4. 10) are the adjoints of
the matrix elements (4.7) of the group S,. However, it
must be noted that if we try to embed the two repre-
sentations (4.2) and (4. 8) of the algebra s, into a higher-
dimensional Lie algebra, we are led to an algebra of
infinite dimension,

Now from the relations (4.5c) and (4.9) one can
derive the recursion relation (3.12), Forming the inner
product of (S, 1) from (4.9b) between the Cartesian
and parabolic bases, this yields

A, $§',,)=[m(n+ 2-2mYn+1- 21n)]1/2@f,,(1~>’;1)
+[fm+ D = 2m)n - 2 m - V]2, 5"””1)0
(4.11a)
Then upon defining
@F,, %)= =2m)! (n = 2m + 1) 1 ]1/22°m /2 nt
(4.11p)

we regain (3.12). We thus could have made these cal-
culations using the harmonic oscillator raising and
lowering operator formalism in ordinary configuration
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space; however, the analysis of the differential equa-
tions that was made previously requires specific Lie
algebra models,

Another important consequence of the symmetry
algebra is the correspondence between the separable
coordinate systems (2.5) and the orbits of the factor
algebra s, ¥s,/u(1) under the adjoint action of S,. An
easy calculation shows that we have essentially two
orbits:

(i) a4, and (i) A,. (4.12)
As discussed previously, 4, is a self-adjoint operator
on 7; in fact, from (3.8a) we have A, =13, - 1. Thus
orbit (i) describes the Cartesian basis, In constrast,
the operator A, is not Hermitian in 7. However, by
considering the Hermitian part ofA3, i.e., ﬁ(A3 +A3),
we find the self-adjoint operator §,=2"1/2(4, +A?).
Thus orbit (ii) describes the parabohc basis and we
have found the correspondence between the two orbits
(4.12) of the symmetry algebra and the two separable
coordinate systems (2.5). It can also be remarked that
the preceeding description of the symmetry algebra also
carries over to the case of any anisotropic two-dimen-
sional oscillator whose frequency ratio is 2:1 (% in-
teger). What does not carry over is the connection with
separation of variables, and the reason clearly is that
for any other ratio of frequenmes the operator A] is
higher than second order, giving rise to a higher than
second order operator for not only the analog of §P but
also of Sp.

5. CANONICAL TRANSFORMATIONS INDUCED
BY THE SYMMETRY GROUP ACTION

In this section we want to show explicitly that the S,
group action induces a canonical transformation in the
Bargmann phase space and point out some of its charac-
teristics. Consider the action of exp(ad,) and exp(RA,);
these produce d11atat10ns of the canonical operators
Th,é;, ie., 771A e nl, Z,— e %, under the first one
and 772 -8, L—~e an under the second one, It is
clear that they preserve the canonical commutation
relations [7;, £,]=46,,1 and the form of the Hamiltonian
(3.5). The adjoint group action of exp(v4,) gives

7, —~ M= exp(yA,)7, exp(- yA,)= 1, + ¥z, (5.1a)
By =M=, & —t1=t, (5. 1b)
t,~ =t -2m,t,, (5.1c)

which can be similarly checked to preserve the canoni-
cal commutation relations and the form of the Hamil -
tonian., Thus S, can be said to induce a canonical trans-
Sformation™'® in the n-space which, moreover, is a
nonlinear point transformation, as ﬁ{ is only a function
of the 7, and the group element. The translation to
ordinary description of phase space can be made
through (3.1) and seen to mix the configuration and
momentum components, The transformation (5. 1) is not
in general a unitary transformation since as was seen
in (4.6), exp(¥4,) is not unitary,

The action of the conjugate representation of S, can
be obtained through adjunction from (5.1) and similar
considerations apply as a canonical transformation, It
is not a point transformation, however,

2222 J. Math. Phys., Vol. 16, No. 11, November 1975

By looking at the transformations (5,1) it is seen that
two new operators appear, namely

Ay=m3, A5=7728,,1, (5.2)

The generators of s, together with (5.2) and the five-
dimensional Heisenberg—Weyl algebra w, form a
solvable dynamical noninvariance algebra of dimension
ten, with the structure s,,~s,-Pw, where s, is a five-
dimensional solvable algebra with basis A[,...,A, and
w, 18 an ideal in s,,, Similarly, one can construct the
conjugate representation from the Hilbert space adjoint
operators, The algebra s,, can be integrated to the cor-
responding group on a dense invariant subspace of .
This group is a Lie subgroup of the pseudogroup of all
canonical transformations, 4

6. DISCUSSION ON SYMMETRY GROUPS AND
ACCIDENTAL DEGENERACY

The degeneracy pattern for the anisotropic oscilla-
tor has usually been attributed®~"!* to the group SU(2).
We feel, however, that the role of this SU(2) is still not
well understood since in contradistinction to the isotro-
pic oscillator case, the formal Lie algebra su(2) for the
anisotropic oscillator cannot be written in terms of
finite-order differential operators in Hilbert space. The
generators of su(2) are written in terms of shift opera-
tors which are well defined over the finite-dimensional
subspaces; however, their extension to a dense sub-
space of Hilbert space seems to have been overloocked, .
Moreover, in order to obtain a unitary irreducible rep-
resentation™ % of the group SU(2) on one of the finite-
dimensional subspaces, a new norm must be introduced.
This is the meaning of the factors containing the num-
ber operator and modulo numbers: One has to rescale
the basis functions so that they form a properly nor-
malized SU(2) basis, for they do not do so in the
ordinary norm. As a consequence, the representations
are nonunitary in the usual Hilbert space norm,

Second, when we follow the procedure of Refs, 5 and
7 for n-dimensional anisotropic oscillators (n>2), the
group SU(n) does not in general give a full account of
the degeneracy of the system, that is, representations
are in general reducible, in fact, completely reducible,
This occurs already in the n=3 case and constitutes the
major failure for SU() as the symmetry group ex-
plaining the accidental degeneracy.

Thirdly, the choice of the group SU(2) [U(2) including
the action of the Hamiltonian] is not unique. In Ref, 7
this choice was dictated in order to find the quantum
counterpart of a classical canonical transformation
which maps the general anisotropic oscillator onto the
isotropic oscillator whose geometrical symmetry group
in Bargmann space is U(2), It is of interest to study the
former system on its own, since the two quantum prob-
lems are not unitarily equivalent,

The generators of the solvable group S, on the other
hand, are all the first order symmetry operators in
Bargmann’s description of phase space. They are thus
the generators of all the geometrical symmetry trans-
formations in Bargmann space, and in this sense they
are unique, While the representations are reducible,
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they cannot be decomposed into irreducible parts, i.e.,
they are indecomposable. We can find no fundamental
reason why, when explaining accidental degeneracy
through a symmetry group, one should exclude non-
unitary indecomposable representations. Clearly, com-
pletely reducible representations should be excluded. It
is thus of interest to consider the n-dimensional gener-
alization of the geometrical symmetry group discussed
above,

To sum up, the connection between accidental de-
generacy and symmetry groups seems to be still an
open question. In this context one should understand the
role played by the infinite-dimensional Lie algebras of
symmetry transformations and its corresponding Lie
pseudogroup. Perhaps more immediate is the possibil-
ity of finding, for all systems with discrete spectra ex-
hibiting accidental degeneracy, a Hilbert space ala
Bargmann such that its group of geometrical symmetry
transformations explains the accidental degeneracy.
Work in this direction is currently in progress,
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Techniques for evaluating approximate space-averages of determinantal measures are discussed. The concept

of combinatorial structure diagrams is introduced and investigated.

. INTRODUCTION

The use of the independent particle picture is very
widespread in many-body theory. I provides the basis
for many approaches in atomie, nuclear, molecular
and solid state physics. There are two basic reasons
for such wide and diversified use. The first——a physi-
cal one—is that under a variety of circumstances,
the motion of the particles is indeed semi-independent,
either because of the weakness of correlations and
interactions, or due to statistical considerations. The
second reason—a more pragmatic one—is that techni-
cally, mathematically and computationally, the nomen-
clature and techniques of independent particle motion
are almost the only manageable tools at our disposal.
It is because of the prevalence of this approach, that
we consider it worthwhile to investigate in greater
depth some of its gquantitative and qualitative aspects.
Particularly because modifications and generalizations
of the theory may thus be better understood. We have
already begun1 a line of research, which we follow up
here in some specialized directions. Since the subject
matter of this work deals with new concepts and entities,
we wish to begin by pointing out its relevance to the
physics involved.

We should emphasize from the outset that we deal
only with systems of fermions; primarily because the
properties of an interacting assembly of bosons involve
completely different concepts and techniques. More-
over, we work explicitly with finite dimensional vector
spaces, with prescribed numbers of particles and of
orbitals. The limitation on the number of particles
simply means that we only deal with finite systems
(such as nuclei, atoms and molecules) rather than
infinite systems (such as solids and infinite nuclear
matter). The limitation on the number of orbits is
equivalent to a truncation of the complete, infinite-
dimensional vector space to a finite~dimensional model
space, and entails an approximation of substance. In
fact, the validity of such a truncation is in itself a
central problem in the theory of any finite system,
along with its relation to the model Hamiltonian.

Having once limited ourselves to a finite, well-de~
fined vector space of completely antisymmetrized
many-particle wavefunctions, we turn our attention to
approximate descriptions of the ground state (and
other low excited states) of the system. One must
remember a very important point here. The validity
(though not necessarily the value} of any given approXi-
mation is determined by its ability to reproduce the
exact states of the model problem, not those of the act-
ual physical system. Thus, when it is possible to solve
the truncated problem exactly, one has a direct way of
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testing various approximations, and it is irrelevant
whether the exact solution does or does not provide

an acceptable description of the real system under
study. This is why, in our general study, the precise
nature of the orbits is of no importance. All multiparti-
cle systems with a given number of particles #, and

a given number of orbitals N are thus, for our pur-
poses, identical. In Sec. II we summarize briefly the
elements of previous work concerning this space S(N, k)
and some concepts related to it. In particular, we dis-
cuss a general subspace S§(N, k) which contains all
states that can be expressed as a sum of n, but not of
less, independent particle determinants. The impor-
tance of these subspaces is readily apparent. As is
well known, the ground state of a given Hamiltonian
satisfies the variational prineiple, requiring that it
minimizes the expectation value of that Hamiltonian.
The Hartree— Fock approximation is obtained by limit-
ing the variational principle to trial wavefunctions be-
longing to the subspace which we defined as S§(N, k).
The straightforward generalizations of the Hartree-
Fock theory, which we investigate, involve the applica-
tion of the variational search in S§’(N, k) with arbitrary
n.

Various relevant questions now arise: How well can
a given state be approximated by a state belonging to
one of these subspaces, SF(N, k) ? How does the answer
depend on the characteristics of that given state, par-
ticularly its energy ? What is the quality of the spanning
by S§"(N, k) of the complete space S(N, k)? Obviously,
the answers to these and similar questions, are es-
sential in determining the usefulness of the generalized
Hartree—Fock approximation, Only in the simplest
of cases, and for the simplest of problems, can quan-
titative results be obtained directly—by statistical
methods, as indicated at the end of Sec. II.

To perform such studies in general, new investi-
gative tools are necessary, and these call for the in-
troduction of new concepts and approximations. Thus,
in Sec. II we introduce “combinatorial structure dia-
grams,” along with a preliminary display of some of
their simplest applications. In very broad terms, a
combinatorial structure diagram describes the inter-
relationships between the various basis states appear-
ing in the expansion of a given state (or family of
states), where the multiparticle basis is composed of
antisymmetrized independent particle wavefunctions
in some standard one-body representation (of dimen~
sion N). The basic relationship involved between two
such multiparticle basis states is the number of single-
particle states they have in common (which clearly
cannot exceed ¥ - 1). How this bears on our previous
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discussion can be intuitively grasped by the following
example. Consider two k-particle basis states which
differ by precisely one single-particle orbital. Any
linear combination of these two states [which would
appear to belong to S£’(N, k)] can trivially be written
as a single determinant in a different single-particle
representation, and thus belongs—by definition—to

SYN, k). The combinatorial relationship between the
two basis states (in this trivial example) determines the
properties of the subspace which they span; namely,
the S§V(N, k) to which it belongs. Generally, of course,
such a determination is neither unique nor can it be
made exactly, but it nevertheless contributes directly
and quantitatively to the problems which we have set
out to solve.

We should also add that the purpose of this work is
to introduce these concepts and to point out possible
directions for their investigation, rather than to pro-
vide an exclusive and comprehensive study of their
properties.

il. THE MANY FERMION SPACE
A. The independent particle description

We consider a system of k& identical particles,
fermions, which are restricted to 2 finite, N-dimen -
sional single-particle complex vector space. % This
space S(N, 1) is spanned by an orthonormal set of sin-
gle-particle states

¢:=lDy=ajlo)yi=1,...,N, @

where nothing is specified about the detailed properties
of these basis states. The multiparticle space S(N, &)
is defined as the antisymmetrized direct product of %
single-particle spaces (S(N, 1) X---XS(N, 1)),. As a basis
for S(N, k) we may choose the B(N, k) functions®

preeip TG 1)+ 0, (B,

i<i<gpe+<i,s<N,
2

The antisymmetrizing operator is defined as
1 s 4
A=y 2= 1°P

where the summation runs over all the permutations
of the arguments 1+-+%2. Clearly, this is an orthonormal
basis of S(N, 2), and any vector ¥ in it can be expanded,

p= 2 I (3)

4 tyenniy
tsij<ci =y 12

It is worthwhile, for clarity of notation and ease of
formal manipulation, to work with unrestricted sums
in Eq. (3); namely to substitute the explicit expansion
of the determinantal wavefunctions. Thus,

b= 0, )+ ¢, (B) @

. . i Y
flomeegip=l o0 ta

where C is a totally antisymmetric tensor, which—up
to a phase—uniquely specifies . The scalar product
of two states ¢’ and ¥® is simply given by contracting
over all the indices of their representative tensors

<¢(1)|¢(2)> — ﬁ‘l

il,...,zk-l

ciPx, cP®
IO Fg T

(5)
Similarly, the n-body density matrix corresponding to
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a given state ¥, is obtained by contracting over k-n

indices,
N

*
CB;...B,, fnelredyt

(6)

Upon a change of the single-particle basis (1) the many-
particle basis is transformed, along with the tensor
Cyy..ns - Let the single particle transformation be
effected by the orthogonal matrix O

Petgorat, By e oBy Qyeasly fpagent,

fyag vee oatpel

N N
¢i= 204d), 5= Li0ys, ™
i= =
then
G, {kzjl..z.j Crnns Onyt, - (8

The antisymmetry is obviously conserved in the trans-
formation; however, the apparent structural simplicity
of a state (say, its being a pure determinant) may be
destroyed by such a transformation.

B. Determinantal measures

Let S§(N, #) be a subspace of S(N, k), containing
all states which are pure Slater determinants. Namely,
all those states for which a single particle orthonormal
basis exists, such that the expansion (3) contains only
one element. More generally, let S{(N, k) be a sub-
space of S(N, k) containing all states which can be
written as a linear combination of », but not of less,
states belonging to S§’(V, k). It must be remembered
that the n Slater determinants appearing in this linear
combination are in general not mutually orthogonal.

We define as the n-determinantal measure of a given
state ¢

" @I
b (w—(ll’“l’) oc Spimn,p(21E) " ° ©

Since {®Iy)|/A®18)!/2 is bounded from above, and
since the variation is carried over a closed domain
(which S§" trivially is), the maximum D‘(}) is always
attained. It may, however, be attained at multiple
points of S5.

In Ref. 1 we have shown an explicit procedure for
solving for D®’(y) and the corresponding determinantal
wavefunction . Let

e=Ad, (1) ¢,(%)

where the single particle states {¢,} are related to the
basis states {d),} through an orthogonal transformation
matrix O [see Eq. (7)]. The variational parameters
are thus the elements {0, , @=1,...%; i, =1,..., N},
and they have to satisfy the equations

N

Ciyeet, Oy Oacr 14 4 Ot 1 " O,

iy eeriggigerootip
=DY(Y)0yy (10)
a=1,...,k iy=1,...,N

where C,l...,k is the totally antisymmetric tensor of

Eq. (4).

Furthermore, we described a general, numerical
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(Monte-Carlo) procedure for evaluating the average of
D® () over the entire space S(N,%). For this proce-
dure to be well defined, one must have a welght attacneu
to each infinitesimal segment dS of the space. One

falls back on the Cartesian picture of S(N, k), which
utilizes the B(N, k) basis states as primary axes. A
point in S is thus characterized by the Cartesian com-
ponents {X,-}, which are assumed to be normalized to
unity. Then,

J DY) dS
(1) — S R
Do = = S

where the weight is simply the surface area of dS.

(11)

The immense dimensionalities involved, even for
primitive spaces, inhibit the direct performance of
the integration. Rather, one resorts to Monte-Carlo
methods, that is, to the utilization of selection proce-
dures, which reflect, through their probability, the
weighting agreed upon. Essentially, one has to select
a point (a state) within dS, with a probability propor-
tional to the area of this infinitesimal element. This is
achieved by successive choices of the B(N, k) compo~
nents of ¥. The probability of finding the ith compo-
nent with absolute magnitude between x and x +dx is

P(x<x; <x+dx)~ ;1% Vi oo pyuil (1= RE 4 — x®/2lax (12)
where
i1
R, = @X? (13)
=

and V(R) is the volume of an n-dimensional sphere of
radius R

T/2 .
/i

Thus, the magnitudes of the components are selected,
then their phases, followed by solving Eq. (10). Some
numerical results of this entire procedure are quoted
in the next section, where approximate methods to
circumvent this cumbersome apparatus are discussed.

V(R)=C,R"= (14)

11l. APPROXIMATE SPACE AVERAGING
TECHNIQUES

A. Combinatorial structure diagrams (C.S.D.}

Let there be N orbits, k particles (fermions) distri-
buted amongst them, and M component states. Disre-
garding the coefficients of these states, we assume
they all are in the same single particle representa-
tion; we are therefore dealing with an assembly of
M k-sets chosen from among N objects. We are not
interested in the specific identity of the M Xk objects,
but rather in their interrelations, which will be char-
acterized by the combinatorial structure diagram
(C.s.D.).

Given m k-gets, we can specify the total number [’
of different objects which appear in their union (or
“circumference”). For example, if N=8, #=3, m=3,
and the three 3-sets are (1, 2, 3), (1,4, 5), and (3, 4, 6),
then I' = 6.

This number, [', is clearly invariant under all permu-
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tations of the symmetric group Py. This is why we only
have to specify I'’s associated with any given assembly
and not the actual objects appearing in it. All assem~
blies which have the same ['’s are said to have the same
combinatorial structure diagram.

There are altogether B(N, k) ways of forming k-sets.
We arbitrarily agree, for the sake of the following,
that no sign change is associated with obtaining equiva-
lent sets by permuting the k& objects of the set among
themselves. There are B(B(N, k), M) ways of forming
different assemblies. We shall associated a sign change
with all odd permutations of the M k-sets among them-
selves. As we indicated, each C.S.D. is characterized
by the set of all circumferences (f°) of all possible sub-
assemblies of m k sets, with m=0,...,M. The cir-
cumferences [' appearing are clearly not all indepen-
dent., To name a few restrictions (given N and k):

for m=0, trivially I'=0,

for m=1, trivially [ =k,

for m=2, k+1<TD <2k,

This is a particular example of a general triangular
inequality holding between I'’s. To make this point
clearer, we may talk about the combinatorial “distance”
between two sets, which is equal to T — 2, and which
gives the number of different objects in each set. If
the distance is larger than 1, we shall refer to these as
“alien” combinations. We note here, that two compo-
nent states whose combinations are alien—cannot be
connected by a one-body operator. Similarly, any n-body
operator can only have nonvanishing matrix elements
between component states no more than » apart, In
Appendix A, we discuss the relation between the set of
{F} and the monomial representations of the permutation
group Py.

In view of the importance assigned to independent
particle description, which in turn emphasized the
difference between alien and nonalien (allied) combina-
tions, we shall group together all C.S.D.’s which have
the same number L, and topological structure, of pairs
of combinations {(component states) which are allied,
that is differ from each other by one object {single par-
ticle state) only. The range of L is 0< L < B(M, 2), but
both limits are sometimes not realized, depending on
N and k. We shall utilize tree, or link, diagrams, in
which M points represent the component states, and
lines connect those which are allied. Clearly, the
diagrams are characterized only by M and L (aside
from the link-topology), while N and % only enter into
the evaluation of the weights of the diagrams, as we
shall see below.

In Fig. 1, we give for example all different link-
diagrams of C.S.D.’s with 2<M <5,

B. Enumeration of C.5.D.’s

We shall begin by some general observations. Hav-
ing restricted ourselves to the (N, 2)M, L classifica-
tion of C.S.D. s, we may state that the smaller L is,
the larger is its relative weight (or its total number of
combinations). This is so because each link means
another imposition, or restriction, which limits the
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freedom of choice of the particular structure diagram.
This, however, is only true when there is little corre-
lation, or self-restriction, amongst the k-sets. To
make this point clearer, let/(N, k) be the largest num-
ber of k-sets, all mutually alien, that can be con-
structed out of N objects (an interesting combinatorial
problem, which is closely related to questions of

state representation). Then, in particular, when M
>M(N, k), we have C(L=0)=0, where C() stands for
the absolute combinatorial count. In this case, we
would say, the mere smallness of the single particle
space imposes descriptive restrictions on multiple-
component many-particle states. However, when M
<M(N,k), C(L) is a monotonically decreasing function
of L. We can estimate the ratio of C(L +1) to C(L),

by assuming all links do correspond to independent
restrictions, in which case

C(L+1) _measure of (+—-)
C(L) measure of (- )
B B(N, k+1)B(k+1,2)
= BBWN, 5,2 -B(N,FrDBE+L,2)’

(15)

L<<M</M(N,R).

For N=10, £=5, for example, this ratio is about
0.025. For fixed % and large N, the ratio behaves
asymptotically as N-*1), The key point is that the
L=0 C.S.D. is dominant, or at most the lowest few
L_values. When the conditions stated above do not
hold, C(L) will have a maximum at some value of L
different from zero.

We give below some specific examples of interest.

M=2: This can be trivially evaluated, since the L
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FIG. 1. All the topologi-

7 cally distinct combinatori-
* / al structure diagrams,

with the number of compo-

nent states (points) M,
less than or equal to 5. A

straight line linking two
points means that they are
allied, namely, they dif-
fer from each other by
precisely one single par-
ticle state. The number L
is the total number of
such links in a diagram.

=0 and L =1 are the only possibilities. We have

C(L=1)=B(B(N, %), 2)

y R(N ~k)
R(N-%) + B(k, 2)B(N~k, 2) + ++ + B(k, ©)B(N - &, k)
(16)
C(L=0)=B(B(N, k), 2) - C(L=1). 1"

L=B(M,2), M>2: This corresponds toa C.S.D. in
which all combinations are allied to all others. We
note that there are two distinct types of M; L =B(M, 2)
C.S.D.’s which have a different total I', one with I’
=% +1 and the other with I' =%+ 3 ~ 1, which may be
viewed as particle~-hole conjugates. By adding a differ-
ent element (state) to each of the k-sets inthe I'=k+1
C.S.D. one arrives at a common (k +1) — set. On the
other hand, by subtracting a different element from
each of the k-sets inthe '=%k+M -1 C.S8.D., one
arrives at a common (% — 1)-set. Obviously, the two
kinds become identical for M =2,

The corresponding count is

C(L=B(M,2),I'=k+1)=B(N,k+1)B(k+1,M) (18)
=B(N, k= 1)B(N-k+1, M), (19)
and
C(M>2,L=B(M,2))=B(N,k+1)B(k+1, M)
+B(N,k-1)B(N=Fk+1,M), (20
Of the two components, the I' =%+ M — 1 dominates
for large N,
1. Kelson and G. Shadmon 2227



TABLE I. Combinatorial count of diagrams for M=3, k=3,
N=6, 8, 10, In parenthesis are given the normalized weights
of the various diagrams,

M=3N=6k=3

M=3N=8k=3 M=3N=10k=3

L=0 120(0.105) 10080 (0.364) 154 000 (0. 548)
L=1 540 (0.474) 13 440 (0,485) 108360 (0. 386)
L=2 360 (0.316) 3360 (0.121) 15120 (0. 054)
L=3 120 (0,105) 840 (0,030) 3360 (0.012)

M =3: The enumeration involves a slightly more
complicated combinatorial procedure. In Table I,
we give the results for some cases, where—in paren-
theses—we give the percentages as well.

Note that with increasing N (and hence approaching
the fulfillment of the above-mentioned conditions) the
L=0C.S.D. becomes dominant. To demonstrate the
behavior in small spaces, we also give the weights for
the M=4, N=6, k=3 case in Table II.

In all cases the numbers sum up to B(B(N, k), M),
as they should.

L =0. As we have pointed out above, this is the pre-
dominant case, and, from the combinatorial point of
view, it is the most intriguing. We shall employ here
an approximation for its caleculation, which may be
generalized to other low L values, and which is guite
amusing.

Clearly, if no two 2-sets are to be allied, then no
(k — 1)-set should appear more than once, in the en-
semble of M k-sets. We divide our c¢ounting into two
stages. First, we consider all the B(N, k- 1) (k- 1)-
sets as independent objects, and only take into account
their gross combinatorial coupling. Second, we con-
sider the correlations that must exist between them
so that they actually form M k-sets, but neglecting
the efiect of interference between them. We note that
each k-set “uses” or (“uses up”) k (k- 1)-sets. Thus
the total count will be approximated by giving the num-
ber of ways of selecting M equivalent groups of &
(k- 1)-sets each, and multiplying it by the probability
that each of these groups, independently, forms a
k-set, Thus,

L(N,k-1}1
C(N,k,M,L=0)= MUED (BN, k= 1) = MR)!
B(N, k) o
“(som i) (21)

To demonstrate the power of this approximation,
and its region of validity (lack of interference) we give
some of the approximate results {rounded to the clos-
est integer), along with the exact ones, in Table III.

L =1: Much the same logic may be applied to the
L =1 case, with the added complication of the linked
pair, which removes the approximate equivalence of
all k-sets. The result is

B(N, k= 1)!
M= TR HB(N, k= 1) = Mk + 1)1

( B(N, k) ) “-2 BN,k +1)B(k+1,2)

C(N, b, M,L=1) =

(22)

B(BWN,k -1),k) B(B(N, k=1, 2k-1)
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Table IV gives a comparison with the exact results
for a few cases, where the agreement is again seen to
be very good.

L =2: To demonstrate the power (and complexity) of
this approximation we give the results for L =2, where
one has to differentiate between the topologies of the
links—joint vs. disjoint. Thus

C(N,k,M,L=2,joint)
- BN, k= 1)1
(M=) (ENDT3(3R-2) (BN, k~ 1) = ME +2)!

« B(N, k) H-3 9B(N, k+ 2)B(k + 2, 2)B(k, 2)
(B(B(N, E-1), k)) B(B(N,k-1),3%-2)

(23)
C(N, k, M, L =2, disjoint)

_ B(N, k- 1)!
T M-I RNk DIABW, k- 1)~ ME +2)1

” ( BN, k)) k)> -4 <B(N,k+1)B(k+1,2)>z (24)

BBV, k-1 B(B(N, k- 1), 2k - 1)

It is easy to check that for large N, larger spaces,
the approximations become increasingly valid, and
that indeed the asymptotic ratio holds.

C. Reduction of C.S.D.’s

A “reduced” C.S.D. (namely one without links, or
with L =Q) is of particular interest, not only because
of its dominance, but also because it represents a wave-
function whose determinantal measure is susceptible
to the above-mentioned simple approximation. We
therefore would like to devise procedures which will
allow us to reduce, or transform, complicated C.S.D.’s
to reduced ones, by removing the links in them. The
procedure is not unique, and furthermore, it neces-
sitates assigning different weights to different points
in the diagram. This last added complexity may be
simply ignored, as an approximate method.

The basis for the reduction procedure is as {ollows,
Given a subset of m points, all of which are mutually
linked, then for any arbitrary amplitudes assigned to
them, they can be written as one single point (namely,
one independent particle determinant) in some repre-
sentation. These m points can therefore be replaced
by one point, with m times the elementary unit weight,
and its relations, or connection, with the other points
in the diagram will be determined by the statistical
behavior of its components. In general, one should
start by reducing the largest aggregates. When more
than one way of reduction is possible, leading to dif-

TABLE 1I. Combinatorial count for M=4, N=6, k=3,
M=4N=6k=3

105 (0.022)

360 (0.027)

1440 (0. 297)
1740 (0.359)
810 (0.167)

360 (0.074)

30 (0.0086)

B
LA I O (O 1 1}
U WN = O
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TABLE IIl. Approximate combinatorial count for L =0. The
exact values, obtained by direct solution, are shown alongside
the approximate one (truncated to the closest integer).

N, B, M Exact Approximate
6 3 3 120 119
8 3 3 10080 9660
10 3 3 154 000 150060
8 4 2 1855 1806
6 3 4 105 27
73 6 210 84
7379 30 1

ferent final results, one should either devise further
rules for selecting the most appropriate way, or else
decide on a recipe for averaging over the diverse
possibilities.

The mechanics of the reduction are best understood
through a direct demonstration (Fig. 2). We keep
track of the weights associated with each point, where
it is understood that no weight quoted means unity.
Also, in contrast to previous notation, we indicate
links by wavy lines, and alien pairs by straight lines.

The complete C.8.D.: Of special interest is the
complete C.S.D., that is, where M has its maximal
value M= B(N, k). This diagram represents the struc-
ture of a state in the entire k-particle space, and
hence is unique in structure, and its reduction is im-
portant. A pictorial representation of the complete
diagram, except for the most trivial cases, is unfeasi-
ble, and there is a multitude of ways for reducing it.
Figure 3 gives, as a very simple example, the case
N=4, k=2, M=6. Near each point we indicate the
state represented.

D. Integrals represented by reduced C.S.D."s

Following the definition, enumeration and reduction
of C.8.D.’s, we now get to the evaluation of the (aver-
aging) integrals represented by the reduced C.S.D.’s.
A reduced C.8.D., in general, is characterized by
the weights w1y, ..., 1, associated with the points, which
are subject to the condition

v
2am; =M, (25)
i
The integral represented (which is the large-space
approximation to the single-determinantal measure) is

K[ml,n.a,mu]
_ e oo Jhdxy o dxy S(xF +o oo + x5~ Dmax(ny, ..., %)
for flndxlomdxﬁla(xf-y... +xf,— 1}

(26)

TABLE IV. Approximate combinatorial count for L=1. The
exact values, obtained by direct solution, are shown alongside
the approximate ones (Truncated to the closest integer).

N, B, M Exact Approximate
6 3 3 540 475
8 3 3 13440 12715
10 3 3 108 360 105100
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M=2 L30

b——o—)i‘q
L=l e —p
M=3 L1320 A_,A
t=1 A—aZ—-c
2 A\ — L. AL
— FE.. 5
L3 OA
M=4L=0 E—’Eg
L= | E—’A
ez X —> &R
2 2
K — 3 ArtA—=F N 12
Ls3 &—)A«
K — tAstA LA
2
—>‘LA.'|12.L..%.
2
B — LALA—2T2. L.
2 2
Nt AV A A S LA L
L=4 E—*%L#-Iso
z 2 2
E_’%A*%A*%A“"Iﬁ’z‘j"}'
L=S m—.il“'lsi_' —)'so—oi%.
L=6 E—a .

FIG, 2, Pictorial representation of the procedure of reducing
combinatorial structure diagrams, to ones without links, Here,
a straight line between two points means they are alien, while
a wavy line means they are allied. A subset of m points, all of
which are linked with wavy lines, can be collapsed into a single
point with weight m, The nature of the linkage of the collapsed
point to other points, is statistically determined by the initial
m connections. This factor is carried in front of the diagrams,
while the weights at each point are given, in case they are not
unity. A repetition of this procedure, not necessarily in unique
order, results in the final reduction.

where

o) M2
¥y =< Z{x, ) ,
iz

namely the “radius” of the ith member of the partition
{m). One may, in fact, characterize the partition in
much the same way as one does Young tableaux.

(27)

(1,2) 3

B (14)

2,9 23

FIG. 3. The complete combinatorial structure diagram for 2
particles in 4 states. The numbers next to the vertices stand
for the single particle states making up the 6 two-particle
states, The reduction is effected by collapsing simultaneously
two complementary triangles.
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The evaluation of integrals of this form is in gener-
al not a straightforward matter. The denominator is
just the surface area of the M-dimensional spherical
“quadrant” (namely, 2 of the sphere). We shall
designate it

1
1
U,M—f --f dxyo e s dxyO(xd+o00 +x% 2 1)
0 0

0

Mﬂ[M/ZJ
AN (28)
with the low oy being
=1, 0,=7/2, o;=71/2, a,= %z’
.n.ﬁ
oy =1%/12, oy=r1"/64, %= T30 05 =1 /768

(29)

Rather than try to evaluate the general integral, we
develop a recurrence relation based on a simple prob-
abilistic idea. Expressed in words it is as follows:

[The probability density that for a given partition
(my, ..., m,) the maximum of 7y, ..., 7, lies within
the range (x, x +dx)]=[The probability that 7, lies
within the range (x, x +dx), times the probability that
the maximum of the rest of the partition is less than
x—summed over 7],

Symbolically,
L. x,
Gimy(x) = Z:le,i:’)(x) . Gimom (T3VT = %%) dT (30)

where G,,(x) is the probability we are after.

GA(m,(x, R) is the corresponding generalized prob-
ability density function, where the variables are re-
stricted to a spherical surface of radius R (rather
than unity) and is susceptible to trivial scaling.

Hence, assuming all functions f, G to be noymalized,
we have

. minfl,x/ (1-25)1 /2]
G () = 23740200 f Cpmpom D dt,  (31)

0
%G (%) dx

o)) ~ (- x)mice, (33)

The normalization is

: Efl(1_x2)(M'"‘i'2)/zdx:—~—-———~——-———(M-mi—2)!!”

EM.mi 0 (M- m; = 111 E by s
(34)
where
Zy =1, aeven
"
= E , @ odd
Thus
f,,f:"’(x) = &y, (1= B W-mi=® /2 @)
and
v
Gy (X)= 23 (5.t1.mi(1 — x3) W=m=2) /2
i=1
minf1,x/ (1-xH /%)
x/ G[m)-mi(t) dt) . (36)
0

Having calculated and normalized all previous probabil-
ity density functions, this, then, provides a recur-
rence relation for G ,,,(¥), and it can be used
numerically.

Numerical solution for stving partitions: A string
partition is one for which ¥=M and all the weights
m; =1. One can forego the necessity to normalize
G{x), and dispense with the summation, since ail terms
are equivalent. Writing Gy(x) for these functions we have

Gylx) ~(1 = xH -3 /2 fmin[l.x/(l-xz)l/zl Gy (t) dt,
9
Gi(x)=08(x - 1), (37

Regarding the technical aspects of the integration
we shall just mention that it is convenient to make a
change of variables from x to y=1/x% The first 20
values of Ky are given in Table V.

The special significance of the string partitions, is
that they may serve as a working approximation for all
partitions, simply by equating K., where M’ > M,
to K, where M =v, which is the number of weights dif-
ferent from 0 in (M’).

Km= - . (32) Divect integration for simple parlitions: The case
Jo Gy (%) dx N > . o sl
v=1 (no partition at all) gives trivially G=6(x - 1)
The probability f‘,ﬁ"i’(x) is of a simple form. It can and K=1. Let us consider the case ¥=2, where M is
easily be shown to be proportional to | partitioned into M= a+ 3. We have
Jhor o [hdye o dxyb(cd +ove +x5 ~ Mymax(Vad Feee txZ, VA%, ++- +x3) ' (38)

K[a,B] =

The denominator is 30, 8 (the factor 3 comes because of
the Jacobian in transforming the 6-function to

SV H g~ 1)
We transform the coordinates as
dxy s oo dxy = v¥dry d,
Ay oo = Ay~ 5 dry dy (39)
and we divide the region of integration according to
whether 7; or 7, is the maximum. Therefore,

1 _rt -1
5K (0,8 0uus = fl/QdVﬂ’fl Jay
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f’ébo.-Podxl...dxMﬁ(x?+-..+xE_1)

xfo'l Ayt oG - (1= ) [ de,
+ [P drghty, [ an, jﬂ’zdafly;‘-la(rf-(l - 73)) dey.
1/Y2

Therefore,
10y 1 ! ©6-2)/2
) O'aOBK(O"B)N—Z‘ dT[Va(l—%)
1/vT
+ 781 = Ry @-22/2] (a1)
or, substituting » =cosx, we obtain (40)
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TABLE V. Values of integrals K, for string partitions,

TABLE VII. Average values of determinantal measures. Along
with the numerical values obtained by the procedure described

M Ku M Ku in Sec, II B, the approximate values are shown.
1 1. 11 . 5926 I Z -
2 . 9003 12 L5772 /n (N, k) Q»mmsmcal <rD>approx.
3 . 8312 13 . 5631 4 2 2 .96 . 950
4 7784 14 . 5503 6 2 3 .88 . 865
5 . 7376 15 . b384 8 2 4 .79 . 805
6 .7038 16 . 5275 10 2 5 .73 .758
i . 6751 17 .5173 6 3 4 .83 . 805
8 . 6504 18 . 5078 8 3 7 .65 . 689
9 . 6289 19 . 4989 10 3 13 .b6 . 570
10 . 6098 20 . 4905 8 4 14 .59 . 557
r/4
K8 = Z“‘ % j (cos® sin®1x + cos’x sin®1x) dx. (ii) An alternative approach is to look at a series of
s J (42)  subspaces of S(N, k), namely at S§’’(N, k)—the space

The integral, incidentally, is simply related to the in-
complete B-function, as can be seen through the trans-
formation ¥*=1y, giving

1
_ 99 A1)/ 8-2)/ (B-1)/2
K 22 [yt 40
1/2

><(1..y)‘°"2)/2]_ (43)

Table VI gives some numerical examples, for all par-
titions such that a +8 < 8.

E. Some combined applications

(i) We begin by calculating the space average (given N
and k) of the single-determinantal measure. One must
remember that this is a highly nonlinear problem, with
many complicated features. It can be evaluated numeri-
cally—and this was done—for simple cases, where
statistical sampling is feasible. Within the framework
described above, we employ the following procedure,
We note that the reduction procedure of the complete
M= B(N, k) diagram, will end up with v no larger than
M(N, k). We also know that but for the smallest spaces,
this is dominant. We therefore use the following ap-
proximation, which is quite ad hoc:

(44)

In view of the uncertainties (due to statistical sampling)
in the numerical procedure, and the rough nature of
this approximation, the results as shown in Table VII

(DD 4 N%(K/n oo TEp -1

containing all states which are expressible as a sum

of v independent determinantal states. Although we
allow, in general, both determinants (in S§’, for ex-
ample) to belong to different representations, we never-
theless try to span the space, or integrate over it, by
considering only the same representation, and going
through the entire reduction and enumeration proce-
dure as before.

Thus, we first find the number D, which is necessary
for S¥’ to span the entire space. This is

B(N, k)
R(N-F) +1

We therefore view S(N, ) as S{”’(N, k) and reduce only
the ¥-C.8.D. rather than the complete C.S.D. It must
be remembered, however, that the relative weights
associated with each point are larger than unity.

V(N, k) = ( ) (the containing integer).  (45)

For example, in the case N=4, & =2 (admittedly
trivial), we have V=2, The relative strengths of the
(+ <) and (*—-) diagrams is 0.2 and 0.8, respectively.
Thus

(Dyy,2=0.8(—+)+0.2(-* -%=0.968 .

Slightly different results would be obtained, had we
performed a binomial averaging over the relative
weights. This compares with a value of 0.96 obtained
statistically.

(46)

Similarly, for N=6, k=2, we also have ¥=2, and

) “7L» s« %n
<D>s,z”%(°)+%( : 7:“) ~0.91

are rather pleasing. . (47
TABLE VI. Values of integrals K,z for o +8< 8.
o 1 2 3 5 6 7
B
1 2v2 i1 22 15 9r 92v2 15 75¢ 522
T 27g 1r 32" 64 457 327 512 25T
2 4-v2 9 . 3x 4-V2 5,51 46 432
3 16 32 3 8 64 35 140
3 282 15 157 28V%
157 32" 128 157
4 96 — 27V2
70
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TABLE VIII. Monomial Representations of Ps,

Rep. label States 1 Py, Py Py, Py Py,
N=3k=1M=1 [()] 1 \ 1 1 1 1 1
2N 1 1 1 1 1 1
[(3N 1/ 1 1 1 1 1
A
N=3k=1M=2 [(1)
()] 1 L1 -1 1 1 -1
- -
(1)
) 1 1 -1 1 -1 -1
[(2)]
) 1 1 -1 -1 -1 1
N=3k=1M=3 [(1]
(2) (1) (-1) (-1) (-1 (1) (1)
(3)
N=3k=2M=1 [(12)] 1 1 1 1 1 1
[(13)1 1 1 1 1 1 1
((23)] 1 1 1 1 1 1
N=3k=2M=2 [(12)
_(13)] 1 1 -1 -1 -1 1
(12)
[(23)] 1 1 -1 1 -1 -1
[(13)
123)] 1 -1 -1 1 1 -1
n=3k=2M=3 712)
(13) (1) (-1) (-1 (-1) (1) (1)
EZS}
N=3k=3M=1 [(123)] (58] (1) (1) (1) (1)

(l:ompared to a calculated value of 0.88. This procedure
can be easily generalized, and it may provide valuable
primary information regarding the representation of
states. Note, that we have used effective, noninteger
weights, by way of indicating the possibility of assign~
ing continuous (average) values to this parameter.

APPENDIX: (I'}) OF C.S.D.’s AS LABEL OF
MONOMIAL REPRESENTATIONS OF Py,

A monomial representation is one in which only the
numbers 0, +1, — 1 appear in the representing matrices
and only one number may differ from 0 in each row or
column. The “states,” or entities which form the basis
of the representation, are only capable of being simply
transposed among themselves under the operations of
the group. Clearly, when each such representation is
viewed upon the real (or complex) numbers, it be-
comes reducible; but this does not concern us here.
The fact that each C.S.D. (along with its I'’s) may
serve as a label for such a representation is a conse-
quence of the fact that it is invariant under all opera-
tions in the group Py. By the same token, if one con-
siders N’ >N, one also has a basis for a representation
of Py, .

2232 J. Math. Phys., Vol. 16, No. 11, November 1275

As an example, the monomial representations of P,
obtained by considering N=3, £=1,2,3, and M=1,2,3
are shown in Table VIII. Under each representation
label (N, k, M), we write down the basis, that is, all
the possible choices of M k-sets. The dimension of
the representation is clearly B(B(N, k), M).

Since the enumeration of all monomial representa-
tions is a formidable task by itself (with significant
logical applications), it is interesting to ask whether
this procedure exhausts all of them. The answer is
unfortunately negative, and is simply demonstrated by
dimensional considerations. For example, the basic
representation of order N! cannot be generated, since
all dimensions appearing must be nontrivial divisors of
N! Another example is the one in which all even permu-
tations are represented by (!;) and all odd ones by (;!).

*Work supported by the European Research Office, U.S. Army
through Contract No, DAJA-37-72-C-4532,

11, Kelson and G. Shadmon, Ann, Phys. 63, 497 (1971).

N is finite, as it is for practical applications of physical
models, Various complications are introduced when N tends
to infinity.
3We use the notation B(N,k) for the binomial coefficient.
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A notion of Hilbert bundle is proposed which leads to the construction of a “big” Hilbert space H starting
from a family of Hilbert spaces. For this, such a family is equipped with a suitable structure, called Borel
field structure. A meaningful relationship is established between the Borel structures which can be defined
on the union of the Hilbert spaces of the family and the Borel field structures with which the family can be
equipped. For a topological group G, the structure of G-Hilbert bundle is defined linking in a suitable way
a Hilbert bundle with actions of G. In the framework of a G-Hilbert bundle, a continuous unitary
representation of G in 4 can be constructed. The transitive G-Hilbert bundles which are often used in the
theory of induced representations of groups are shown to be a subclass of the class of the G-Hilbert

bundles which are proposed in this paper.

INTRODUCTION

In this paper we deal with some topics in the theory
of vector bundles.! In fact, we are concerned with some
vector bundles in which the fibers are Hilbert spaces
and actions of a group G are given. We shall call them
G-Hilbert bundles.

The interest of such a study is twofold. Indeed, the
mathematical structure we examine has an intrinsic
relevance as it is not trivial and leads to meaningful
mathematical results. Moreover, even if vector bundles
do not seem very popular among physicists, this struc-
ture is perhaps one of the best suited for the discussion
of some fundamental physical problems. In fact, it
encompasses and intertwines in a very intuitive way
geometric ideas with measure-theoretic, topological,
and differential concepts, thus providing a unified set
of mathematical tools for the discussion of covariance,
invariance, gauge transformations, and so on.? Besides,
the interest of vector bundles for physics is shown by
the role this structure plays in some rather recent ap-
proaches to classical mechanics.?® Finally, we notice
that a possible physical interest of G-Hilbert bundles,
or perhaps of some generalization of them, is to pro-
vide a framework in which to study the coupling of
external and internal symmetries.

Our main concern, in the present paper, is to get a
unitary representation of a group G from a G-Hilbert
bundle. This procedure is very well known from the
theory of induced representations when the group acts
transitively on the base space.* However, we extend
the theory to the nontransitive case since many a group
of physical interest do not act transitively on the base
space. Moreover, we find some conditions for the con-
struction of G-Hilbert bundles which are easier to handle
than the very definition of G-Hilbert bundle and which
can be met in some definite situations. For an example
of such a construction of a nontransitive G-Hilbert
bundle starting from phenomenological considerations,
see Ref. 5.

In Sec. 1 a notion of Hilbert bundle is proposed which
leads to the construction of a “big” Hilbert space #/,
starting from a family {#(¢)} (¢< Z) of Hilbert spaces.
For this, such a family is equipped with a suitable
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structure, which is called Borel field structure. Another
structure is also found which provides a way to con-
struct a Borel field structure and which can be more
amenable to tackle than the very definition of Borel field
structure. Furthermore, a relationship is examined be-
tween the Borel structures which can be defined on the
union of the //(£)’s and the Borel field structures with
which {#(¢)} (¢< 2Z) can be equipped. When such a
relationship holds, the elements of the Borel field
structure are characterized by the Borel structure.

In Sec. 2 the structure of G-Hilbert bundle is defined
for a locally compact topological group G satisfying the
second axiom of countability. In this structure, a Hilbert
bundle and actions of G are linked in such a way that a
continuous unitary representation of G in /4 can be
constructed. This is perhaps the main item of the
present work.

In Sec. 3 another structure is examined, which turns
out to be equivalent to that of G-Hilbert bundle but
possibly easier to handle. In fact, it can be viewed as
a means of constructing G-Hilbert bundles. Finally, the
transitive G-Hilbert bundles which are often used in the
theory of induced representations of groups, are shown
to be particular cases of the general G-Hilbert bundles
which are discussed in the present paper.

1. HILBERT BUNDLES

One could be tempted to accept as a meaningful notion
of Hilbert bundle that of a family {#/(¢)} (£ Z) of Hilbert
spaces //(¢) with an index set Z, and reject further
conditions as unessential sophistications.® However, the
best we can do in general with such a family is to con-
struct the linear space Il,c, //(¢) of the maps x from
Z into the set S=U,c , #/(¢) that have the property x(¢)
€ H(¢) for each te Z, in which the addition and the
scalar multiplication are defined pointwise, i.e., by
(x +9)(&)=x(£) +y(¢) and (ax)(£) = ax(¢). Besides, this
is not a really satisfactory outcome, as what we get is
just a linear space and not a Hilbert space. In fact the
Hilbert space structure of the 4/ (£)’s could as well be
absent, since only the linear space structure of the
#/(£)’s enters the above construction. Then, we are led
to search a notion of Hilbert bundle wherein the Hilbert
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space structure plays a central role. In such a notion,
some conditions should indeed appear in an essential
way in order to glue the 4 (¢)’s together. Our main
reference is a book of Dixmier,” which will be hereafter
denoted simply by D. The paragraphs 1 and 2 of D, II
are assumed as prerequisites to this section.

We begin with some conventions, which will be held
throughout the paper. Whenever a family {# (¢)} (¢< 2)
of Hilbert spaces is given, we always assume that Z is
a standard Borel (B in the following) space. With the
abridgement d(¢) for dim//(¢), we define the set Z,
={te z; d(g)=p} for any p=1,2,..., . For any p, we
denote by H®’ a definite p-dimensional Hilbert space
(it is not important what it is, but it is important to
maintain it fixed through the discussion).

Now, we recall the definition of Borel field (BF in the
following) structure, reproducing Def. 1 of D, II, 1 with
“Borel” in the place of “measurable.” This substitution
is made consistently through the paper (see the remarks
at pp. 143 and 146 of D).

Definition 1.1: A BF structure on a family {#/ (&)}
(¢ Z) of Hilbert spaces is a linear subspace o of
[, 5 H{2) with the following properties:

(1) Z > £~ lx(Oll € R {the real line) is a B function,
Y xe o

(ii) if y& Mye , 4(2) is such that Z3 £~ (D)1 y(0)
e € (the complex plane) is a B function for any x € o,
then ye o;

(iii) a sequence { x,} of elements of ¢ exists such that,
for each £ Z, the closed subspace of //(¢) spanned by
{x (&)} coincides with //(¢).

Whenever a BF structure o is given on a family
{H ()} (¢ Z) of Hilbert spaces and a positive measure
i« is defined on Z, then we can construct a “big” Hilbert
space which is called direct integral of the //(¢)’s and is
denoted by "f? H(¢) du(). Take in fact the subset o, of
I, , /{(t) containing those elements y & [l,e , /() such
that Z 2 ¢— (x(£)1 y(£)) € € is a p-measurable function
for any xc o. It can be shown that o, defines on {//(¢)}
(¢< Z) the structure of u-measurable field of Hilbert
spaces (Def. 1 of D, II, 1). Then we define °f, 4 (¢)
xdu(t)="u [PH(£)du(t) (see Sec. 5 of D, T, 1). The
elements of this Hilbert space are equivalence classes
of elements of IT,c, //(¢). A useful remark is that each
such equivalence class contains an element of 0. We
shall denote with the same symbol a vector of °/ #/(¢)
Xdp(Z) and a representative element thereof and we shall
always choose representatives which lie in 0,

From the above considerations it follows that a rea-
sonable notion of Hilbert bundle is provided by a family
{H (D)} (¢e Z) of Hilbert spaces together with a BF
structure on it. However, it may happen that a BF
structure can hardly be found, also in the framework of
a mathematical or physical problem in which, on the
contrary, a family {# (&)} (¢e Z) of Hilbert spaces
naturally arises. For this reason, we shall now present
a constructive approach to BF structures, hence to
Hilbert bundles.

Definition 1.2: We say that a basic unitarity is given
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on a family {#/(¢)} {¢< Z) of Hilbert spaces if d(¢) is a B
function (which amounts to the condition that Z, is a B
set for any p) and a family {// (&)} (¢e Z) is given in
which //(¢) is a unitary isomorphism from //{(t) onto

H®O Y ez,

We shall now state a theorem which connects Hilbert
bundles with basic unitarities. Before, we notice in the
present paper that when we consider a Hilbert space as
a B space, we take on it the natural B structure defined
by the inner product.

Proposition 1.1: (a) If a basic unitarity is given on
{#(©)} (te 2), then the subset o of Il,c, #/(£) containing
those elements x for which Z,2¢ =~ {/{£)x(¢)c H? is a
B map for any p, is a BF structure on {//(¢)} (¢€ 2),
which is said generated by the basic unitarity.

(b) If a BF structure o is given on {#/ (&)} (< Z), then
a basic unitarity exists which generates o.

Proof: (a) We notice that x < o iff ¥ is an element of
,ez /(&) such that Z, > &~ (ul{/(g)x(¢)) e € is a B func-
tion, for each ue H®) and any p.® Then, we can easily
show that o fulfills the conditions of Def. 1.1. First we
notice that ¢ is obviously a linear subspace of Il,c , //(2).
Next, for any xc 0, Z, > £~ [lx(9)lle R is a B function
for any p, since [Ix{&}I1P=3, 1 @1 {/(£)x(£)V? for an
orthonormal basis {«,®"} in H®). Hence ||x(¢)|l is a B
function on Z, since the Z,’s are B sets whose
(countable) union is Z. Let, moreover, ye Il , //(£)
be such that Z > £— (x(2)!y(¢))= € is a B function,¥x < o.
For any p take an element x®’ of H?®' and construct the
map x:Z —~ Uy, H(2), x(0)={/(£)*x¢®) which is ob-
viously an element of 0. Then (x*' [ {/(£)v()) is a
B function on Z, whence (x®’|//(£)y(£)) is a B function
on Z, for each x® c H®) and for any p, which amounts
to ye 0. Finally, for any p let{x,®"} be a sequence of
elements of H® which span H®’. Then, for any » the
map x,:Z —~ Ug. 2 A0, x,(2)=(/(£) x4 is obviously
an element of o and { x (¢)} span //(¢) for each {< Z, as
/(%) is a unitary isomorphism.

(b) The proof can be easily performed taking into ac-
count Prop. 1 and the proof of Prop. 3 in D, II, 1.
QED

This proposition shows that it is equivalent to have,
on {4 (¢} (t€ Z), a BF structure or a basic unitarity.
In particular, part (a) provides a way to construct a
BF structure on {//(¢)} (¢< Z), i.e., a Hilbert bundle,
whenever a basic unitarity is given. We point out that,
in definite problems, a hint for the construction of basic
unitarities may be furnished directly by the possible
presence of “natural” isomorphisms among those //(¢)’s
which have the same dimension. This can be a way to
solve the problem of the construction of BF structures.

It is obvious that a basic unitarity which generates a
BF structure does not need to be unique. Anyway, it is
quite natural to state the following definition, since the
objects in which we are primarily interested are the
BF structures.

Definition 1.3: Two basic unitarities are said equiva~-
lent if they generate the same BF structure.

The equivalence of two basic unitarities can be
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characterized in an intrinsic way, namely without
referring to the BF structures they generate. Previous-
ly, for a basic unitarity defined by the family {// ()}

(¢ Z) of unitary isomorphisms we construct the map

b U, (Z,xH®)—S, w(é/)(i,u)= U8,

which is obviously a bijection of U, (Zp X H®)onto S. In
what follows, on Z, XH®’ we assume the product B
structure and on U, (Zb x H®}) the sum B structure. When
we consider the set //(#) of the unitary operators on a
Hilbert space /4 as a B space, we take on it the struc-
ture generated by the strong operator topology. There-
fore a map f: X—(¢/(#) from a B space X into // (/) is

a B map iff £, : X~ #/, f,(x)= f(x)u is a B map for each
u< . Now comes the announced theorem on the
equivalence of two basic unitarities.

Proposition 1.2: If two basic unitarities are defined
on {#(0)} (¢ Z) by the families {//(¢)} (¢< Z) and
{t/t )} (€ Z) of unitary isomorphisms, the following
statements are equivalent:

(a) the two kasic unitarities are equivalent;

b) Zz, ¢~ (/" (DY (O e [/ (H?P) is a B map for any
P
(c) ’l?(é/')'lo ¥(;/) is a B automorphism of U,(Z,xH®).

Proof: (a)=> (b). Take an orthonormal basis {u, "}
in H®) for any p. Define, for any index #, the elements
#, and u/, of [, , /4 (¢) setting

u, (5= {U(Z)-lun(d(m if n<d(g),
! 0 if n>d(g),

and analogously for «/, with //’(¢) in the place of /().
For any n and m, (w,(¢)lu,(¢))is a B function on Z as
u;, and #_ belong to the same BF structure. Therefore,
for any p and for any » and » in H®’ the function

@l @ Y@ w =2 (w|u,®) @ @) u, ) @, ® |

nym

is a B function on Z,, whence Z, > £— (/' ()(/(¢)  uc H®
is a B function for each uc H®.® Then, (b) follows
by the remark preceeding the proposition.

(b)=>(c). We have that Z,xH®} > (£, u) —~ (/' (©){/ (D), u)
€ [/(H®)xH® is a B map with respect to the product

B structure on //(H?)XH‘® . Therefore Z,xH® > (¢,u)
= (8¢ (Ey ue H® is a B map, whence the same
holds for Z,XH® > (¢&,u)— (&, (/" (D) (O u)e Z,xH®,
This last map is nothing else than ¢,.,™ °3,,, re-
stricted to Z, XH®). Moreover, in (b)(/(¢) and //(¢) may
be interchanged as //(H®’) is a topological group with
respect to the strong operator topology.® Then (c)
follows.

(¢)=>(a). Projecting onto H® we have that, for any
Py Z,xH® 3 (&, u)—{/"(£){/ (&) 'uc H®) is a B map. If
x is an element of the BF structure generated by the
basic unitarity defined by {//(¢)} (¢ Z), then, for any p,
Z,2 ¢~ (D x()e H® is a B map, whence the same
holds for Z, ¢~ (¢, (/(0)x(¢£)) e Z, xH® and for

2,3 t— () (O WO = 4 (Ox(E) e HS .
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Therefore, x results into an element of the BF structure

generated by the basic unitarity defined by {//’ (£)} (¢< 2).

As in (c) we can interchange // and //’, (a) is proved.
QED

In some definite case, it may happen to have a B
structure on S=U,c ,//(¢) and a BF structure on
{#(©} (¢< Z). Then, a somewhat natural question is
whether a relation can be defined between the two
classes of BF and B structures such that, whenever it
holds, the elements of the BF structure on {//(¢)} (¢ 2)
can be characterized by means of the B structure on
S=U,c z#(£). We propose here an answer to this
problem.

Definition 1.4: A BF structure oon {4 (¢)} (¢€2) is
said to be compatible with a B structure on U,z , # (¢)
if, for a basic unitarity which generates o, the map
‘P(L/) introduced before Prop. 1.2 is a B isomorphism,

We remark that the above definition makes sense be-
cause of the equivalence of the statements (a) and (c) of
Prop. 1.2. The usefulness of the concept of compatibility
now introduced is brought into evidence by the following
theorem.

Proposition 1.3: Let a BF structure o be given on
{H(©)} (€ Z) and let it be compatible with a B structure
which is given on S=U,z, #/(t). Then, for an element
x of M=, H(2), x= o iff x is a B map from Z into S.

Proof: Let {{/(£)} (¢ € Z) be the family of unitary
isomorphisms of a basic unitarity which generates o.
Then 3 is a B isomorphism and, for an element x of
Mez, H(Z), x is a B map from Z into S iff y{j/)ox is a
B map from Z into U, (Z,xH"), and this happens iff
Z,3 - [ {©)x(f) = H® is a B map for any p, namely iff
X< 0o, QED

We point out that whenever a BF structure o is given
on {//(£)} (¢ € Z), then one and only one B structure
exists on S=U,-, A4 (¢) with which ¢ is compatible. It is
in fact the B structure which can be transferred from
Uy (Z,xH®) onto S by means of the map ¥(//) defined by
a basic unitarity which generates o. If conversely a B
structure is given on S, then at most one BF structure
o exists on {//(£)} (¢ € Z) for which the condition of
compatibility holds. If, in fact, ¢’ is another such B
structure, then ¢’ is forced to coincide with o by the (c)
=> (a) part of Prop. 1.2.

Finally, it can be easily shown that if a BF structure
on {#(¢)} (¢ = Z) is compatible with a B structure on S,
then for each ¢ €Z the B structure induced on #(¢) by
S results into the natural B structure defined on 4 (¢)
by the inner product. The proof is left to the reader.

2. G-HILBERT BUNDLES AND REPRESENTATIONS
OF GROUPS

The subject of this section is a structure which in-
cludes a Hilbert bundle together with actions of a group
in such a way that a unitary representation of the group
can be constructed. By G we shall denote a locally com-
pact topological group satisfying the second axiom of
countability.

Definition 2.1: A G-Hilbert bundle (G-Hb in the fol-
lowing) is a family {#(¢)} (¢ € Z) equipped in the fol-
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lowing way: (a) Z is a B G-space, namely a homomor-
phism f of G into the group of the permutations of Z is
given such that GXZ = (g, {)— #(g)¢ € Z is a B map. (B)
On S=U,=, #(¢) a B structure is given, and it is a G-
space, namely a homomorphism T of G into the group
of the permutations of S exists such that 7:GX§- S,
7(g, w)= T{g)w, is a B map.

) Themap 7 :S—~Z, nlw)=¢ if we ({), intertwines
T and ¢, namely {(g)e m=70°T(g) for eagh g€ G, and
T(g) restricted to 4 (¢) is a unitary isomorphism of
() onto H(t(2)t) for each g G and ¢~ Z.

(6) On { # (&)} (¢ € Z) a BF structure o is given which
is compatible with the B structure which is given on S.

We notice that condition (5) may be interpreted as a
triviality condition, as in its essentials it states that the
B space S is B isomorphic to Uy (Z,xH*') through a
family of unitary operators. We notice also that, as a
consequence of condition (5), the map 7 results in a B
map. In fact, d)(u) is a B isomorphism for a basic
unitarity which generates o and we ¢‘( y is a B map,
since it is the projection U, (Z xH®)s (L,u)—~ < Z,
Hence, 7 results in the product (mo d(U))O(L(U) of two
B maps.

The next theorem shows that a continuous unitary
representation (c.u.r. in the following) of G can be
constructed in the framework of a G-Hb. In fact, a
Hilbert space # will be constructed as well as a c.u.r.
of G in /, namely a continuous homomorphism of G into
the group // (#) of the unitary operators on // endowed
with the strong operator topology.

Proposition 2.1: (a) In a G-Hb, let a positive measure
i be given on Z and let . be quasi-invariant with
respect to the action ¢ of G on Z. Denote by // the Hil-
bert space ° ;9 H(¢) dp.(¢) introduced after Def, 1.1, by
i, the measure defined on Z for each g € G as u,(a)
= u{t(g™)(A)), for each B set A of Z, and by A, a rep-
resentative of the Radon—Nikodym derlvatlve dp / dy..
Then there exists exactly one c.u.r, V of G in 4 such
that

(Vighx) (€)= (1 (N /°T(g) x(1e™)0), ¥ x€H, teZ,

for v-almost all g€ G, where v stands for a Haar mea-
sure on G.

(b) If u is invariant, then the map V, of # into itself
defined by (V,x)(¢)= T(g)x(t(g-1 ¢) for each xe A and
{eZisa un1tary operator such that V: G~ (/(#), V(g)
=V, isac.ur. of Gin A.

Proof: (a) Take an element x of 0. Then, taking into
account the conditions (o) and (6) in Def. 2.1 and Prop.
1.3, 6xZ2{g,t)~x{ig"r)€ S is a B map, whence
the same holds for GxZ > (g,¢£) —~ (g, x{tlg™)E)) € G%S.
Therefore, GXZ > (g,¢) ~ T(g)xltlg” )¢} S is a B map
as a consequence of condition (8) in Def. 2.1. Next, let
G*xZ > (g,5) ™ 2(5)€C be a nonnegative B function for
which a B set G’ exists in G such that v(G - G’)=0 and
Z > ¢~ \(¢)eCis a representative of du/di, ¥ g€G".
The existence of such a function is asserted by Theorem
8.10 of Ref. 9. Then GXZ > (g, §)"()\ W2 T(g)
Xx(t(g"1)¢)e S is a B map, since it results from the
composition of
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GXZ32 (g,00~ (LON?, T(g)x(tlg™Me) e ©xS

with €XS > (o, w) ~ awe S, which is obviously a B map
since it is translated into € U (Z, XH®) > (a,t,u)

= (¢, 0u) €Up(Z,xH?) by the B 1somorph1sm J’(U de-
fined by the famlly {U(©)} (g e 2) of unitary isomor-
phisms of a basic unitarity which generates o.

Take now an element x of / and an element g of G’.
The map Z 2 ¢~ (A (£)'? T(g)x(t(g™E) €S is an element
of nrez’L/(C) as a consequence of condition (y) in Def.
2.1. Indeed, it is an element of o by the observations of
the preceding paragraph. Moreover, it defines an ele-
ment of 4 since square integrability follows from

L OS2 1) x(tg™ O dnnle)
=[x A 8) d )

~] lIx(OI? due) = llxl?,

which is a consequence of condition {¥) in Def. 2.1.
Then, for each gc G’ we can define L, : /= H, (L x)(?)
= (L2 T(g)x(t(g™)¢), which is trivially shown to be a
linear isometric operator on //. Now, we want to show
that it is in fact a unitary operator. Previously, we
notice that if v is, for instance, a left Haar measure,
then v((G - G’'Y) = (G - (G’)™?) is a right Haar measure
of G - G’, whence v(G - (G’Y")=0 and G’ may be re-
placed by G’ N (G’)"! in the above discussion. Therefore,
we can assume G’ invariant with respect to inversion
and arrive at the conclusion that, for each (rc G’ and
x€H, the map Z> £~ (A, g))HZT(g-l)x(z(g € S defines
an element of 4. Applymg L, to this element, we get

(A, (D) Aaltlg™ P2 T() T(g ~)x(2),

which equals x(Z) p-a.e. since Ag(g)hg-l(l(q'l)z;) is a
representative of the Radon—Nikodyr derivative of u
with respect to itself by Lemma 8.9 of Ref. 9. This
argument establishes that L is onto, and hence that it is
a unitary operator.

For g ¢ G’, we can define L, to be, for instance, the
unit operator on //. We want now to show that, for two
elements x and y of /, the function

PEIGXZ ~C, ¢%g, O)=(Lx)NE)|¥(2)
is vX p~-measurable. First we notice that
GXZ 3 (g, O~ MLV T(x({tlg V) =S
is a B map, as it has been previously shown, and that
GXZ=(g )—=y()eS

turns out easily to be a B map as a consequence of Prop.
1. 3. The same obviously holds for the restrictions of
these maps to G’ XZ with the induced B structure. Next,
composing these maps with d) , restricting to G’

X Z, and projecting from ZPX};/P) onto H'» we get that

G’XZp = (g’ g) - [,/(g) (()\g(g))x/z T(g)x(t(g‘l)g)> ﬁ,H(p)
and
G'xXZ,5 (g,8)—~ (/&) y(5) e H?®

are B maps for any p with respect to the induced B
structure on G'XZ,. Then, taking an orthonormal basis
{u,®} in H® and by Ref. 8, we get that
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¢'xz,> (g,ma((M,(;))”zT(g)x(t(g*)z.:)ly(;))
=23 (YOO LOP2T() x(tg™)E)) |u,®”)

n

X (u,® | /(8 ¥(2))

is a B map for any p. Since this map is nothing else than
@ ‘*Y restricted to G'XZ,, since G'XZ, is a B subset of
G’ XZ and since G’XZ is the union of the countable

many G'XZP’S, we have that the restriction of ¢ ¥ to
G’'XZ is a B map. It is then enough to notice that

vX W(GXZ =G'XZ)=v(G - G") u(Z)=0 to obtain the re-
quired vX u-measurability of ¢,

Now, let v be a finite measure on G equivalent to v
(such a finite measure exists since in a locally compact
topological group satisfying the second axiom of coun-
tability a Haar measure is o-finite) and x,y two ele-
ments of //. Then, by the Tonelli theorem (see, for
instance, Theorem 22 in Chap. 12 in Ref, 10), the
integral I= [ ([, 1¢*¥(g, £)Idu(t)) dv(g) exists. More-
over, by Schwarz and Holder inequalities,

l(p(x.y)g | du(g)
(.fz (L F)OIR du(£)>1/2 : (fz Iy (@I? du(:))‘”
— el - vl

whence [ <V (G)llxll - llyll. Then, again by the Tonelli
theorem, ¢“+¥ig ¥X u-integrable on GXZ. Therefore,
by the Fubini theorem (see, for instance, Theorem 21 in
Chap. 12 of Ref. 10), the map

G2 g~ [ o"g, Ddp@)=(L,x|y)e C

is v-measurable, whence v-measurable, for all x,
V= /LII .

Finally, from Theorem 8. 10 of Ref, 9 we get that
Neye () = Mgy (Hgi DM, [(2) for vXvXy almost all
(21582, £ GRGXZ, For such a triple in wh1ch more-

over g, and g, are such that g, £,, £18: ¢ G and for
x = /{ we have
(L gy L8y =0, (12T () (L) (g )E)

=, ;)x,z(xg;l)c))”z (g T(gy)

Xt g,22)™)8)
=0 5, (N2 T(g1:) % (H(£2£)™)E)

—(L,, ).
1°2

Therefore, (L, L x)(g) x)(;) h-a.e. for vXv-
almost all (gugz)’_ GXG and each xe /{, whence L, L
Lg e for vXy-almost all (g,, g,) = GXG. The resul't
then'follows from Lemma 9. 6 of Ref. 9 since H is
separable as a consequence of the corollary in the

paragraph 6 of D, II, 1.

(b) As in the part (a), we get that, for each xc /4,
GXZ (g, &)~ T(g) x(t(g*)¢) = S is a Borel map. From
this fact two consequences follow. The first one is that
for each g = G we can show [taking into account condition
(v) in Def. 2.1 and the invariance of the measure] that,
for any x of 4/, Z3 ¢ —T(g)x(t(g™*)¢) € S defines an ele-
ment of //, and therefore we can define in a consistent
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way the operator V,, which is easily shown to be unitary.
The second one is that, following very closely the pat-
tern of part (a), we can show that G2 g—=(Vxly)=C is
measurable for all x,y = /4 with respect to a Haar mea-
sure on G, Moreover V, V.sVY £,8 <G, canbe
stated by an easy compufaztlon “Then V results into a
c.u.r. of G in 4. 12 QED

3. AWAY TO CONSTRUCT G-HILBERT BUNDLES

Proposition 2.1 shows that G~-Hb’s can be useful.
However, the notion of G-Hb is somewhat cumbersome
and in definite cases it cannot be so easy to construct
G-Hb’s. We shall now propose a way to bypass this
difficulty., We begin with a definition.

Definition 3.1: A pre-G-Hb is a family {#/(£)} (¢= Z)
equipped in the following way:

(a) Like (&) in Def. 2.1.

() S=U,-, #(£) is a G-space, namely a homomor-
phism T of G into the group of the permutations of S
exists.

(¢) Like (y) in Def. 2.1.

(d) On {4/(£)} (£ = Z) a basic unitarity is given such
that if {//(¢)} (¢ € Z) is the family of unitary isomor-
phisms associated with it, then

Gx2,5 (g,0—~ [/(H@)e) T(&) /(&) =

is a B map for any p.

U(H(P ))

The structure of pre-G-Hb may happen to be easier
to handle than that of G-Hb, as condition (b) in Def. 3.1
is weaker than condition (8) in Def. 2.1 and sometimes
condition (d) can be fulfilled without too much trouble.
This was the case, for instance, in a previous paper, ®
and this is the case, also, when a basic unitarity can
be found such that, for any p,

U@ T @) /(&Y' =R*Xg), ¥V ¢=Z, ¥ geG,
where R isa c.u.r. of G in H®,

We notice also that condition (d) of Def. 3.1 turns out
to be equivalent to the following one:

(d) on {#(£)} (¢ = Z) a BF structure o is given such
that
GXZ = (g,0) ~@y(;>1 T(g)x(t(g‘l)§)>r—: c

is a B map for all x,y=o.

Suppose in fact that (d) holds. Then, take o to be the
BF structure generated by the basic unitarity of (d). An

element x in 0 is an element of Tc,/#/(¢) such that, for
any p, Z,3 ¢~ (/(£)x(¢)c H» is a B map, whence, by
using condition (a) in Def. 3.1,

GXZ, > (g,8) = (/g x(t(g ) =H®

is a B map, and this implies that

GXZ,>(g,¢)
- (u<;>r(g>a<t<g-l>g)-*, a(:(g'l):)x(t(g*)g))
EU(H(P)) XH(P)

is a B map, if condition (d) is taken into account. There-
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fore, since /()X /4 o (V,u)— Vuec /4 is a B map for
any Hilbert space //, for any p

CXZ,2 (g 8) = )T (g™ )=H®

results in 2 B map for each x =g, whence the same
holds for

Gpr 2 (g, )
~= (Y ©)¥(©), YT () x(tg™)E)) e HOXH®

and therefore also for
6%2,2 (g, 0~ (3@ 7@ 3z ) <@
for all x,y =o. Then for ¢ condition (d’) holds.

Suppose conversely that (d’) holds. Then, take a basic
unitarity which generates the BF structure ¢ of (d’) and
let {C'/(U} (£ = Z) be the family of unitary isomorphisms
associated with it. Particular elements of ¢ are the
elements of Il,c, /(&) defined by x(¢) = //(£)*x %",
where x’ is any element of H®’ for any p. Then from
(d’) it follows in particular that

GXZ, 2 (g, 0~ (] 7OTE) (HgHE ) =€

is a B map for any p and all v, u< H'®’, By the still
used standard arguments condition (d) then follows.

The following theorem shows that, also if pre-G-Hb’s
may be more amenable then G-Hb’s, these two struc-
tures are in fact equivalent.

Proposition 3. 1:{(a) If a pre-G-Hb is given, then a
unique B structure can be constructed on S such that the
conditions of Def, 2.1 hold with respect to the BF
structure generated on {4(£)} (¢= Z) by the basic uni-
tarity of condition (d) in Def. 3.1.

(b) If a G-Hb is given, then the conditions of Def. 3.1
hold with respect to a basic unitarity which generates
the BF structure of condition (5) in Def, 2.1.

Proof: (a) By means of the basic unitarity of con-
dition (d) in Def, 3.1 we construet the map

by y (Z,<H®) =S, b e, u)= ()M,

which is a bijection of U, (Z,<H®") onto S. Then, we
can transport the B structure of U, (Z,XH*") onto S.
Take on S this B structure and on {#/(£)} (¢ = Z) the BF
structure generated by the basic unitarity. Then con-
dition (8) of Def. 2.1 obviously holds. To perform the
proof of this part, it is then enough to show that the
map 7:GXS—S, 1(g,w)=T(ghw, is a B map. First, we
notice that T can be decomposed into the product 7
:w(u) °opom, Where

7: GXS —*GX(U (ZPXH“”)),
)

Mg, w) =g, ¥ )" W) = (g, 1), |w)w),

and

p:GX (L_J (prH(p))) — ;J (ZPXH(P))’
plg, &, u) = (t(g)c, U t)E) T(2) a(g)-lu),

as can be easily shown by a direct computation. Next,
we notice that lﬁ(a) and 7 are B maps as a direct con-
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sequence of the B structure defined on S and that p re-
sulis in a B map as a consegquence of conditions (a) and
(d} in Def. 3.1 together with the fact that

UHIVXH 2 (V,u) = Vuc f

is a B map for any Hilbert space //. This proves that
7 is a B map.

(b) The only thing to be proved is that condition (d) of
Def. 3.1 holds for the family {//(¢)} (¢ = Z) of unitary
isomorphisms of a basic unitarity which generates the
BF structure of condition {§) in Def. 2.1, The map

-1, ¢ BNy _,
n -bx(g (z,xH )) GxS,
n-!(gy g"1"):(577 d)({l{/)(g’u)):(g, L/(:)-lu)y

is a B map as a consequence of condition (§) in Def.
2.1, whence ‘p(L/)'l oTo°n ! is a B map from Gx(u,(Z,
X H®Y) onto U, (Z,%H Y if condition (g) in Def. 2.1 is
taken into account. Then, restricting ¢‘(U)‘1 o Toqt to
GXZ,XH®), projecting in the range space from Z ,x<H?
onto H®’ and fixing an element u of H®) in GXZ ,XH®’,
we have that GXZ, 5 (g, £~ (/KO T(Y) /(O uz H?
is a B map for any p and each u = H"®’. This concludes
the proof, by the remark preceding Prop. 1.2. QED

Thus, the class of G-Hb's can be identified with the
class of pre-G-Hb’s in the definite sense that a bijection
can be constructed befween these two classes along the
lines of Prop. 3.1. We stress that, in many circum-
stances, it is likely that pre-G-Hb’s are easier to be
found than G-Hb’s. Under this respect, the relation be-
tween pre-G-Hb’s and G-Hb’s is in fact quite similar to
that between basic unitarities and BF structures
examined in Sec. 1.

A structure which is often found in the literature (see,
for instance, p. 86 of Ref. 9) can be obtained making
some alterations in Def. 2.1.

Definition 3.2: We call a transitive G-Hilbert bundle
(TG-Hb in the following) what we get {rom Def. 2.1
suppressing condition (6), maintaining conditions (a),
(R), (¥), letting G act transitively on Z [namely for any
two elements ¢, and £, of Z an element g~ G exists such
that #(g)g = ¢,), and adding the conditions that the B
space S is standard, that the B structure induced on
H{Z) by S coincides with the natural B structure of
H(Z) for each {=Z, and that 7 is a B map.

We shall now show that the class of TG-Hb’s is a sub-
class of the class of G-Hb’s. In fact, the following
theorem proves that TG-Hb’s are exactly those G-Hb’s
in which the action of G on Z is transitive.

Proposition 3.2: (a) A G-Hb in which the G-action of
condition (a) in Def. 2.1 is transitive, results into a
TG-Hb.

(b) If a TG-Hb is given, then a unique BF structure
on {4(2)} (¢ = Z) exists for which condition (5) of Def.
2.1 holds, namely with which we get a G-Hb.

Proof: (a) By condition (5) in Def. 2.1, S changes into
a standard B space, as it is isomorphic to the sum B
space of the countable standard B spaces U, (Z,XH®).
The assertion about the B structure induced on 4 ({)
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follows from the last remark of Sec. 1 and the assertion
about 7 from the remark preceding Prop. 2.1.

(b) First, we construct a basic unitarity on {#/(£)}
(¢ = Z). Owing to transitivity of the action of G on Z
and to condition (y) of Def. 3.2, d(¢) is a constant func-
tion on Z. Then, choose a point ¢, in Z and take H
= H(&,) as the definite space H®’ of the fixed dimension
p common to the Hilbert spaces of the family {4 (¢£)}
(e Z). Let s be a B map from Z into G such that s(g,) )

is the unit element of G and #(s(£))¢,= ¢ for each ¢ e 2;
such a B map exists after Theorem 8.11 of Ref. 9. Then

T(s{¢)™),, where » means restriction to //(¢), is a
unitary isomorphism of //{Z) onto H for each t = Z, as
a consequence of condition (y) in Def, 3.2. By setting
()= T(s (&)™), WO} (e 2) is a family of unitary
isomorphisms which defines a basic unitarity on

{H(O} €= 2).

Next, we want to show that for this basic unitarity the
condition {d) of Def. 3.1 holds. Denoting by G, the
stability subgroup of G at ¢, equipped with the induced
B structure of G, we have that

Go*H 2 (g,u) ~T(Quc H

is a B map with respect to the natural B structure on
H, since it is the restriction to G,XH of 7 which isa B
map from GXS into S and since the B sets of H are B
sets in S as well because H =1Y({¢,}) is a B subset of

S {as 7 is a B map and Z is standard)} and the natural B
structure of H coincides with the B structure induced
on it by S. Therefore, G,> g—~T(gum<H is a B map for
each u~ H and from this the same follows for G;> g
~T(g), = (/(H), where v means restriction to H. More-
over, GXZ (g, ) — s(t{g")¢) e G is a B map, whence
the same holds for

6XZ > (g, c)~(g,s(t(g-1);))e exG
and for GXZ > (g, £)—~ gs{t{g)e)e G. Then
GXZ > (g, g)»(s(g)*, gs(z(gfl)g)) cGXG

is a B map, whence the same holds for
CXZ>(g,8) ~s() gs(tg™)) e G.

As ()7 gs(l{g™)8) € Gy for each (e Z and gc G, and G,
is a B subset of G, we get that

GXZ2{g,t) sty g s{g ™)) = G,

is a B map. Therefore,

GXZ2(g, t)—~T <S(§ gS(f(g")E))
=T(s(¢)Y), Tg)T(s(tg' )C)
=M T@ Y (Mg K e A/(H)

is a B map, whence condition (d) of Def. 3.1 easily
follows.
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Then, from Prop. 3.1 (a) and its proof we know that
we have a G-Hb if we define on {4 (£)} (¢ € Z) the BF
structure generated by the basic unitarity now con-
structed, and on S the B structure which makes of the
map d)( Ha B isomorphism. Now, we want to prove that
this B structure coincides with the one existing on S
after condition (8) in Def. 3.2, namely that with respect
to this last B structure ¥(;/) is a B isomorphism. We
have in fact that ¥(;/) results from the product of the
map ZXH> (¢, u) = (s(¢),u) = GXH, which is a B map by
construction, with the map GXH> (g,u)~ T(QucS,
which is a B map with respect to the B structure in-
duced by GXS on GXH, as a consequence of the fact that
7 is a B map after condition (8) in Def. 3.2. Moreover,
the B structure induced by GXS on GXH coincides with
the natural one, by the arguments used above. Then
d)(L/) is a B map. As for IP(L/)'I, it is the map

Sow —-(ﬂ(w), T[s(ﬂ(w))’lw]) =ZXH,

which is a B map since n is 2 B map by hypothesis, and
S s w —Tls(nw)y*]w = H will now be proved to be a B
map. In fact, by using the fact that 7 is a B map, this
map would easily be shown to be a B map if S were the
range space. Anyway, the same holds with H as range
space since H is a B subset of S and its natural B
structure coincides with the one induced on it by S, as
has been proved above.

Thus, the BF structure generated by the basic uni-
tarity defined by {L/(;)} (£ e Z) tulfills condition (5) of
Def. 2.1. Its uniticity is a direct consequence of a
remark following Prop. 1.3. This concludes the proof.

QED

It is worthwhile to notice that, while for a general G-
Hb the c.u.r. of G which is constructed in Def. 2.1 can
be given in a definite form for each g= G only if the
measure W is invariant [see the part (b) of Prop. 2. 1],
for a TG-Hb this is possible also if the measure is not
invariant but only quasi-invariant. We have in fact that
if the action of G on Z is transitive, a B function
GXZ 2 (g,8)~x(£) =T exists such that Z> ¢~ (£) c €
is a representatlve of du /du for each gc G and Nt (¢)
=2, {teMe). %, (g) for all gugcGandcZ, 2 There-
fore2 proceedmg as in the part (b) of Prop. 2.1, we can
define in a consistent way

Vil = H,
(VO Q) = (N2 T(g) x(Hg ™) L)

for each g= G and show that it is a unitary operator on
H suchthat Gog—~V = //(#)isac.u.r. of Gin 4. Ob-
viously, this is the c.u.r. whose existence is asserted
in the part (a) of Prop. 2.1.

Finally, we point out that TG-HDb’s are widely spread
in the literature mainly because they are closely
related to the theory of induced representations of
groups. *
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Unequal mass spinor-spinor Bethe-Salpeter equation

B. J. Brennan

Department of Physics, University of Auckland, Auckland, New Zealand
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Coupled radial equations are derived for the ladder approximation Bethe-Salpeter equation describing a
system of two spin-(1/2) particles of unequal masses interacting to form a bound state of total mass zero. The
numerical behavior of the coupling parameter A as a function of the mass ratio is examined for known
analytical equal-mass solutions. In addition a perturbation method is employed to investigate the behavior of A

for small values of the exchange mass.

. INTRODUCTION

In this section we briefly recapitulate certain features
of the Bethe ~Salpeter (BS) equation for two bound spin-
3 particles, We examine equal mass systems in Sec. 1I
and perturbation of the mass of the exchange boson in
Sec. III. In several contexts we need to refer to a paper
by Brennan and Keam® and a series of papers by Keam. ?
The notations and conventions of the present paper are
the same as for these references.

In configuration space, the ladder approximation,
Wick -rotated BS equation describing the interaction of
a spin-; fermion of mass m, and a spin-; antifermion
of mass m, to form a bound state of total 4-momentum
P=(P,iE), may be written

ly-(a+ip, P)+ m,,]f(x)[‘/'(g—iubP) +m,)= -/ (R) flx), (1)

where x is the (Euclidean) relative coordinate, R (=vx?)
is the four-dimensional radius, |/ describes the inter-
action of the two particles, and p, +u,=1. Inthe par-
ticular case where the interaction is due to the exchange
of a boson of mass u,® the potential |/ takes the form
[we use the label n. s, (j) to show that j is not summed
up in the preceding expression]:

Vi==ATi(4un/R)K (uR), n.s.(j), (2)
where A/, the coupling parameter, is given by*
N =glgl/(4n)?, n.s.(j). (3)

Here j assumes the values 1,2,4, or 5 when the ex-
change boson is of scalar, vector, axial vector, or
pseudoscalar type, respectively. In the notation of K1,
TV is of form ¢,T; [n.s. (j)], where ¢, is +1 for j=1,4
and -1 for j=2,5. g (i=a,b) is the coupling constant
for the interaction of particle i with the exchange boson,

When the particle of mass m, is a fermion rather than
an antifermion, the modified BS amplitude f°(p) = f(p)C*,
where C is the charge conjugation matrix, satisfies an
equation of the same form as Eq. (1). The potential
due to boson exchange is the same, with the exception
that I'’= +T,. 5

In relative momentum space, the transform of Eq.
(1) may be written

by + ., P)=im ] fp)ly - (p -, P) —im, ]
= @) [ d*®ll/(|p - k) 15, (4)

where
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W) = [ dxet™{/(R), )
and
K =1,
For the exchange of a boson of “type” j,
W(K) = -3 1@n)? (K> + p?)*Ti,  n.s.(3). (6)

Throughout this paper we consider the BS equation for
the centre of mass system with E vanishing; viz P, =0,

Il. UNEQUAL MASS SYSTEMS
A. Introduction

Unequal mass systems have not previously been con-
sidered in any detail. Brennan and Keam?! have shown
that the coupling parameter is an even function of the
mass difference, m, - m,. Keam ** developed a per-
turbation theory and applied this to an SV sector solu-
tion, giving the approximate behavior of x for small
values of the mass difference, while in Ref. K6 the
same author examined mass symmetries of the equation
and 2,

In Sec. IIB we derive the coupled radial equations for
unequal mass systems, and in Sec. IIC and the appendix
we examine the numerical behavior of x as a function of
m,/m, for the known analytic equal mass solutions of
Keam *® and Kummer,® The latter task has been per-
formed using numerical methods and, for Kummer’s
solutions, by the use of perturbation theory.

B. Reduction of the equation

We consider the configuration form of the BS equation
[Eq. (1)] with P,=0.7 In this case the set

{851{7, 0’:52,‘12,‘];’/_9-’51} (7)

is a commuting set of operators. Here f3, is the BS
operator of the left member of Eq. (1); «,8%,J% J, are
the O(4) operators constructed from the angular mo-
mentum operators /i, X'; 7 is the parity operator®?*:
and (, is the generalized charge parity operator, X°
Thus we may express the BS amplitude f as a simulta-
neous eigenfunction of these operators. For convenience
we shall consider eigenfunctions of 1 later and for the
moment consider eigenfunctions of the remaining oper-
ators, viz, f” 42, . Four distinct classes exist, as
follow. We use the notation of K4 for kets, that is, we
write angular kets as | T',(l, s*)j", (I, s7)i";Jm), though for
brevity we omit the quantum numbers J and m. The
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angular momentum operators $t, L*, J* are defined in K1, Class 1:
Parity eigenvalues in the following refer to fermion—

antifermion systems. ®° D3 5D5 s +2mlDyg 0, + D2y gv,) = - lm?~ 8%+ V1,

Class 1: @ =4j(j+1), g2=0, P =(=1)7 (19a)
fi=rs|1Ta4, 00, (4, 0)5) DDy 50y +2(5 +1)D7 50, + 20+ Dms + 2ia%)
+fy | T20+ 5,3, (G+3, 27 == @2j+Dm® =224V, ],
iy, | Teli =5, 2, (5-5, 20 (19b)
+ /o (WVD( T4, 1, (G, O = | Tal4, 00, (G, 1)), Dil=Dl 000 +20D5 p 0y + 2jms = 20000
) =~ (25 + 1)m? = A%+ V,]u,, (19¢)
Class 2: a =4j(j+1), 82=0, D =(~1)7 =D% D5 + 208l ~jD5 0, + (j+ )2y y0,) = =lm? - 4%+ V],
fo=Frr UV T3, 1), (G, O + | To(5, 0%, (4, 1)7)) (194)
| Talit 5,2, (G+3, 990 where
+fa,| Tali= 2, 27, (=4, 37 s=@F+1MY,, o==G+D3%,, v=71%,,
+/5| (4,00, (4,0)). 9) w=Li(G+ D@+ DI, (20)
Class 3: a =p*=4(j+1)%, P =(~-1)Y Class 2:
o= VBN s F i)y 10y D3l + 2ml—jD5 0, + (j +1)D7y pan) = ~Im? = 82+ ¥, Jw,
where Dol =D3 pay~2(5 + 1)D7y ) pa, = 2mw = 2i(j+1)8p] (21a)
Fisom=t |ToG+ 3,8, GG+4,3)i+1) = @+ D) =A%+ T, Ja, (21b)
+/2 | To(G+1,1)j, (+1,0)j+1) Di[D7, 40, = 2103 00, + 2mw  2i5Ap)
+fr, 1 Taldy 0}, (3,107 +1) @ D= A4 T, o16)
» ThalTaG+ 2, ) (G4, 0+1) (1) =D ,,D5p +208[D; 0, + D7y 0, = = [m® = A2+ V(]p, (214)
where
Jitson==fy[Tald 2 741, (544,99 w=iG+ D@+ D ¥, a=-GHD%,, a=7"%,,
i, [Ta(i+1, 0541, (j+1,1))) b 2+ 1) %Fp. 22)
+fr, | Tald, i+ 1, (5, 0)9) Cluss 3 & 4.
LA l T, (j+385+1, (5+4, ). (12) DD, v+ iA{D';il—D{)?fg] =={m2-n%+ ?2]2), (23a)
Class 4: a =f=4(j+1)?, P =(-1)"" D7y | D5ty + 2ma + 2iav] = <[m?® - A2+ 7V, ]y, (23b)
Fa= V2S5 aam~Tieriame (18) D} D3ty +2ma = 2i8v] = ~[m?=a2+V,]i,, (23¢c)
DyD; 0+ mlDity+ Doty )= =[m? = 8%+ 7V, ]a, (23q)
Wej consjéer Iiotentials of the type where
V:'? VART, (=1,2,4,9) o v=fy, L=V2y, bL=V2r, a=f,. (24)
and define For each of the above classes, eigenfunctions of c L
Vj:?ci,-l/‘(R), (15) ;?:: :: extracted from f by expressing each radial func-
where the c,; are defined by gRy=g'(R, %) + ag (R, 6?), (25)
f‘ir',: ¢;;T; ms.(j) (16)  Separating odd and even functions of A in the equation

sets (19), (21), and (23) yields six sets of equations in~

lef. K1, Eq. (16) and Table IJ.
» Eq. (16) and Table I} volving the radial functions tabulated in Table I.

We also define

2, 20ta)
“" 3R R ’

For the particular case where the potential is due to
(17) the exchange of one type of particle only, certain sym-
metries in the equation sets (19), (21), and (23) are

as in K1, whilst apparent.

Some of these arise from the fact that the operator

=1 + A= 1 -n). 18
m=3(m, +m,), 3(m, —m,) (18) Tt where
The coupled radial equations obtained on substitution . ,
in Eq. (1) are then as follows: 787 bsm,, my)=fpim,, =m)vs=F"(p)rs, (26)
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TABLE I. Grouping of radial functions according to modified
charge parity eigenvalues.

51 Class 1 Class 2 Classes 3 and 4
Coh o Sabehe s oG
(_ 1) I S-rvang w ’al;aZ:p- 'V-»tly 2,3

commutes with A;')/. Using the relation®®
(27)

where ¢/ is +1 for j’=2 or 4, and -1 for j=1or 5, we
obtain the result that if f(p) is a solution of the BS equa~
tion, then 7 Zf(p) is also a solution, for the same values
of x, m,, and m,. We note that in the proof of Eq. (27),
it is assumed that f and X are analytic functions of m,,
and that certain integrals converge and are nonzero,

M(m,, —m,)=eX(m,,m,),

Thus 7 2f, is a class 2 solution, with w, a;, a,, and p,
respectively, replaced by —u®, iv}, v}, and s? (the
superscript ? denotes that in functions parametrically
dependent on m,, m, has been replaced by -m,). Simi-
larly, 7if, is a class 1 solution, with the converse re-
placement. /f;is a class 4 solution with v, £, 1,
and a, respectively, replaced by —ia?, -t/ -3, and iv?,
while 727, is a class 3 solution with the converse re-
placement.

However, the new solutions predicted by the action of
7% on known solutions in practice vanish, and this is
examined briefly in Sec, I C3.

The equation set (23) is of interest for j=2 or 4 (V or
A type exchange), where a simplification occurs. In
these cases V,=0, and the terms involving v and D}t
- Dit,, are decoupled from those involving ¢ and Dy,

+ Dyt,. Similarly, in the momentum space transforms
of Egs. (23) [cf. Egs. (33)], the terms involving »(P)
and t,(P)~t,(P) are decoupled from those involving a(P)
and £,(P) + (,(P).*°

This decoupling is related to the properties of the
operator §, defined in configuration space by

L. WiC AW
S I&)=5=7 8( dty (x_y)z)')/'a
_ 1 yaf(ylyd
=3 d*y Y (28)
or in momentum space by its transform
Sef ) =2Lrip 2L, (29)

where P°=p?. We note that, in both representations,

SE=1 (30)

and
[SX’BO]:[SP,A()]:O, (31)

where -4 is the momentum space BS operator of the
left member of Eq. (4). In both representations, the op-
erators /¥, ,C,, and R commute with §. §,and {/ (or
S, and [7') do not commute, though in the case of a class
3 or class 4 solution with V or or A type exchange,

(S L 1) =[S ,,¢/ 1£p) =0, (32)
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and hence the decoupling noted above occurs, In partic-
ular, in momentum space, the terms in the expression
for f(p) associated with g and ¢+ ¢, form an eigenfunction
of § » with eigenvalue +1, while those associated with v
and ¢, —t, form an eigenfunction with eigenvalue -1,

C. Behavior of A when ma ¥ mb for known solutions

In this section we consider the unequal mass generali-
zations of the equal-mass solutions of Keam and Kum-
mer. In Sec. IIC 1 we present a perturbation treatment
of Kummer’s solutions, and in Sec. IIC 2 we present a
numerical approach to the solution of the unequal mass
equations. As in Sec. IIB we consider the BS equation
with P, =0, and also set p =0,

1. Perturbation theory for Kummer’s solutions

These are class 3 class 4 solutions for a fermion—
fermion system with V type exchange, and (, = (-1)2/*1,
If we allow negative values® of A, the solutions are ap-
propriate to both fermion—fermion and fermion—anti-
fermion systems, for both V and A type exchange. The
eigenvalues of » are described by the two parameters j
and ¢, where ¢g>2j+2. The momentum space equa-
tions in this case are the transforms of Eq. (21), viz.:

dyd; o[ (1-8% = P)a +io(ty+ t,)] = - 8aa, (33a)
0%, = (1-6%)t, = 2i0a - 2500, (33b)
o2ty = (1=6%)t,=2i0a + 250w, (33c)
dyd; 15[(1 =6 + 0%)v + 50(1, ~1,)] = 8rv, (33d)
where

5=4/m, o=P/m, and dfx':é%'_i 2—(L:—q-), (34)

Eliminating v, #;, and £, yields

. Lo+ (1+8)?)lo% + (1-5)2
dydy;s 0'2—)(1—62) ( ) ]a=8>\ag (35)

We assume that the operand of the left member of Eq.
(35) and » may both be expanded as a convergent power
series in 6%, Equation (35) may then be written as

o406+ 7o+ 782 +---]=0, (36)
where
SO SO . ) i €. S

0% -(1-5%

and the differential operators/),,/),,- -+ depend on the
terms Mg, 2y, -« + in the expansion

A=AgHA8i+--. (38)

Using as the independent variable

Z=(1+ 0‘2)'1, {39)
we obtain for /), and /), the expressions
a2 d
— —Z2 42 _oz21-7) &
Do=2(1-2) 7 2Z%(1-2) y7
=+ +3) +M(1-2)(1-22) (40a)
and
D1 =2Z(1=-22))) +22,(1=2)(1-22)
-20Z(1-2)(1-8Z +82?) (40b)
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From Eq. (37),
DoTy=0

and
Domy +0,70=10 (41b)

We act on Eq. (41b) with the operator /{7, :}, where
Ll{A,B}zf; dZZ2A B, (42)

Assuming the integrals converge, it may be shown that

{41a)

Lidte, Domit=L im0 oToy=0, (43)
using (41a). Thus
Lx{ToDJo}:O’ (44)

and for given values of j and ¢, the known expressions
for X, and 7, may be used to yield a value for \;,. In the
simplest case (g=2j+2),

- _(3i+4
=g |, = (F ) oa)
where

ro=5(25 +3)4j+5) {45b)

2. Numerical calculations

The analytic solutions of the relevant equations [viz,
Eq. (35) for Kummer’s solutions, and the momentum
space analogs of Egs. {19) for Keam’s solution (with j
=0)] is rather difficult, and consequently a numerical
approach has been adopted based on that used by Keam
in finding his solution.

(i) The method

We require a solution f(p) of the BS equation to satisfy
the boundary conditions!?

b< -3, (462)

where the behaviour of any radial term g(P) in the ex-
pression for f(p) is given by

g(P)~P as P-.0,
gpy~pr (46p)

Consider a system of n coupled second order differen-
tial equations in # radial functions f=(f,,...,f,). This
is equivalent to a system of 2n coupled first order dif-
ferential equations in the 2x functions £’ ={(df;,. ...,

Af s fiyesoosf,). Here the operator d denotes differentia-
tion with respect to y, where

a>-=-2,

as P— «,

“@n

With y as the independent variable, we may evaluate the
Frobenius series for which Eq. (46a) is satisfied as P
{and y)—~ 0. This yields n; vectors ] (i=1,....,n).
Similarly, with the independent variable

y=02

u=01+6%+y)7?, “48)

we may evaluate the », vectors g;.(j: 1,...,n,) for whicl
Eq. (46a) is satisfied as P — «,

The variable « is chosen so that, for the cases con-
sidered, there is a region of the complex y plane in
which both sets of vectors are convergent series.
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Hence if h’ represents the radial functions (and their
derivatives) of a solution of the BS equation, then in this
region

(49)

where i and j are summed over their respective ranges,
and not all of ¢, or b, are zero,

h'=at;=bg,

If, as in both cases considered in this section,
(50)
the condition that a nontrivial solution of Eq. (49) exists

is that ?{-‘

°

n +n,=2n,

)
il
o

d,(y)=det (51)

n
g1
g,
2]

for each eigenvalue 2.

If n, +n,>2n, Eq. (49) may be satisfied for all
appropriate values of 1, while if n, + n,=2n+1~m (m
=2}, m distinct conditions must be satisfied in order
that an eigenvalue exist. The latter possibility is con-
sidered unlikely, and the former in not encountered for
the potentials considered.

The series involved in the expression for 4,(y)
were numerically summed, term by term, for two dif -
ferent values of y, until the magnitude of the terms fell
below a cut off value, and the determinant dx( V) was
evaluated. Changes in the sign of d,(y) as A was varied
were used to locate eigenvalues. The use of two values
of y can distinguish cases where d,(y) has a zero, at
one value of y, but is not identically zero, or where d,
approaches an asymptote, and also provides a check on
the effects of computer roundoff. The programmes
were run on the University of Auckland Burroughs
B6700 computer.

(ii) Keam’s solution

This is a class 1 solution with j=J=0, A type ex-
change, and(, =+1. The momentum space radial func-
tions for this case are

(52a)
(52b)

d} pdol (1=8% = 0%)s + 2i0v, | = - 162,
d; dy ;s[(1=5° = 0®)v, + 2i0s]= - 8rv;.

The system has regular singular points at y=0, «
and -2+ vI=y, where

r=1-5% (53)

Here n, =n,=2, and the match may be tested on the in-
terval ye (0, (1-0)?) for 5> 0,

The eigenvalue was determined for values of 1/ up to
40 (note that for large values of 1/7 the mass ratio
m,/m,~4/r, assuming 6> 0). A relative cutoff value
|term/sum of series! of 10°!* was used for the Frobenius
series involved.

For large values of 1/#, the matching region becomes
small, and consequently a new variable y/{2(1=5)*+y]
was used to perform the evaluation of the series that are
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FIG. 1. The coupling parameter as a function of 1/7 for
Keam’s solution.

valid as y— 0. This provides more rapidly convergent
series, with a matching region ye (0, =), When 1/7=40,
the errors due to roundoff were apparent (the B6700 has
22 significant figures in double precision). For all
other values of 1/# the agreement between the zeroes of
d,(y) for the two different values of y was excellent, and
for 1/7 <10, the two values agreed to within 1 in 108,

The results are summarized in Fig, 1, where A is
plotted against 1/7 on a log-log scale. The numerical
value of 9A/85%],z_, agress well with that obtained by
Keam.®® It appears probable that X — © a5 1/7— »
(and m,—0). This is consistent with the fact that no
acceptable solutions to Eqs. (52) have been found for §
— ‘1° 13

The graph of A vs 1/7 is very nearly linear. The
gradient of the regression line of In(A =7.,5) on In(1/7
-1) is 0,997, and the regression line of A on 1/7 yields
estimates of A that are accurate to within 0,05 for 1/7
in the range [1, 20]. Thus X is approximately given by

A=1,357+6,194 (1- A%/ m?)™?, (54)
(iii) Kummer’s solutions

Equation (35) has four regular singular points at the
same values of y as for the system of Eqs. (52) for
Keam’s solution, and may be reduced to Heun’s equa-
tion. We examine certain properties of Eq. (35), and
present an alternative method of determining the eigen-
values, in the appendix.

We again consider the differential equation with de-
pendent variable 7, rather than q. In this case n,=n,
=1, and the match may be tested for y=(0, (1-5)?), The
zeroes of d were numerically determined for all cases
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FIG. 2. The coupling parameter as a function of 1/7 for
Kummer’s solutions, j=0.

in which A <50 when m,=m,, and for 1/ <10, Again
the agreement between the values of ) obtained for two
different values of y is excellent.

The results are summarized in Figs. 2,3,4, and 5,

3
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5 6 7891 20
e

FIG. 3. The coupling parameter as a function of 1/ for
Kummer’s solutions, j=1/2.
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again using a log—log scale. Qualitatively they are
similar to the results for Keam’s solution, though the
departure from a linear relationship between A and 1/#
is more marked.

In the case g=2j+2, the value of 9x/85% ;2_, agrees
well with that given by Eq. (45). In all cases, it ap-
pears probable that A —~ = as m,— 0. The author has
investigated the hypergeometric equation obtained from
Eq. (35) when 6 =1 (and m,=0), and has found no cases
in which acceptable solutions exist, with either positive
or negative eigenvalues.

The regression lines of In(A =\,) on In(1/7-1), where
Xo= Al g2, yield estimates of X accurate to within 2%
for 1/7 in the range [1,10]. These regression lines
yield expressions of type

A=A, +A(L/ 7 =1)B, (55)

The values of Ay, A and B are tabulated in Table II. B
is always slightly less than 1.0, increasing with j for
fixed ¢, and decreasing as q increases for fixed j. A
increases with ¢, but is almost constant with respect
to j, for fixed g¢.

3 Action of 79 on known solutions

As noted in Sec. IIB, we expect that 7/ 1f be a solution
of the BS equation, where f itself is a solution. We note
that the radial equations for the radial functions of 7 &f
are equivalent to those for the radial functions of f,
with m, replaced by ~m,, and A’ replaced by €/ 27,
Applying the methods of the previous section to Eqgs.
(52) and Eq. (35) with m, negative yields no eigenvalues.
Equation (A4) of the appendix has also been analyzed
by splitting the operator and the operand into odd and
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FIG. 5. The coupling parameter as a function of 1/7 for
Kummer’s solutions, j=3/2 and 2,

even functions of m,/ m, and solving the resulting pair
of coupled equations numerically, as in the previous
section. This yields the expected solutions and eigen-
values for m, positive, but the solution vanishes identi-
cally for m, negative.

Thus it appears that 7 2f=0 for the solutions consi-
dered in this section, and hence the integrals involved
in K6, Egs. (23), (25), and (26) vanish, so that Eq. (27)
of Sec. IIB is not valid.

1. PERTURBATION OF EXCHANGE MASS
A. Introduction

Previous studies of the spinor—spinor BS equation
with nonzero exchange mass have been performed by
Narayanaswamy and Pagnamenta,'* who numerically
solved the eigenvalue problem in A using a high momen-~
tum cutoff, and Guth,'® who performed the same task
without a momentum cutoff by the addition of regulating

TABLE II. Parameters A9, 4 and B in the expressions Aj,
=np+A(1/7r - 13,

j q Ao A B
o 2 7. 500 4,212 0.9172
0 3 19.187 8.456 0.8916
0 4 36, 682 14,792 0. 8766
3 3 14,000 8.308 0.9308
i 4 28. 651 13.694 0.9118
3 5 49,083 21.118 0.8976
1 4 22. 500 13, 816 0.9347
1 5 40.127 20.375 0.9122
2 5 33. 000 20.715 0.9416
2 6 45,500 29. 024 0.9431

B.J. Brennan 2246



072 1
x
1073 ]
X
1O—A 1. 1 P— 2
1078 1075 1074 1073 1072
_}J2

FIG. 6. The fractional change in the coupling parameter as
a function of the exchange mass for Keam’s solution.

terms to the one particle exchange propagator. The
author’s approach has been to apply perturbation theory,
and use numerical methods to evaluate the integrals
encountered. This analysis has been applied to Keam’s
solution and to the cases j=0, ¢g=2, J° =1* of Kum-~
mer’s solutions.

B. The method

We consider the momentum space form Eq. (4) of the
BS equation for ma=mb, P,=0. When the exchange
mass p is nonzero, the right member involves terms of
type (12/m)In(u?/m?) and thus a perturbation expansion
in powers of u? is not valid. Rather we assume

T®)=1o(p) +f1(12, p),
A=Xo+ 24 (p?),

(56a)
(56b)

where f,(p) and A, are appropriate to the case p2=0,
and f,(u?, p) and 2, (u?)— 0 as p*—~ 0. We assume also
that the integrals encountered are convergent,'® and set

ap LB f e, TR 2
/d k(p-—k)2+p.2—_/dk (p_k)z +AIa(N ,P)

(@=0,1) (57)
where TV is appropriate to the interaction type consid-
ered. 1t is assumed that for small y A% (u?,p) and
A (AL (u?, p) may be neglected.

Equating the remaining terms involving p? yields

(yep—im)fl(ﬂz;P)(Y'P-im)+%% a‘k rj(p—zk)f)

2, z gy 2 ap, Difo(k)
== anrp) -4 /dk (58)

(p—k)*’
we multiply Eq. (58) on the left with the adjoint f (p)
whereX?
f_(pspn;):‘y‘lf(py _p4)y4, (59)

take the trace and integrate over momentum space. The
left member yields zero [cf. K4, Eq. (52)]. We there-
fore obtain, with the use of Eq. (57) for a =0,
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LN, gwan0), (60)
where
QW)= [ apd BTGP OV (=R 47 61)

For the solutions considered in Sec. IIC the evaluation
of the integrals in ¢ (u?) is most conveniently performed
by numerical integration. In particular, we consider
the integrals

A (P)= [a*K{l(p - k) + p?l[1+ K/ m?Y}?

- [ ) 8
where

z=x+ (1=x)(p ¥/ m? + x(L-x}P*/m?), (63)
and

b4(P)= [ d*kk, {[(p—k)* + u2l[1+K*/ m?} 1

=p,B,(P), (64)
where
i
B,(P)=m*® T f dx(1 -x)(;ﬁ)’ : (65)

The latter forms for A (P) and B, (P) are obtained by
using the Feynman method. '’
C. Application to known solutions

(i) Keam’s solution

This may be written,** to within a normalization
factor,

fo(pY=s(P) + v, (Pyy-p/ P, (66)
where

s(P)=2u"(1 =14y + 5602 - 841° + 42u*), (67a)

0, (P) = Ti(K/ m)u®(1 =2u) (1 —6u + 627), (670)
and

u=01+P/m?™*, 67¢)

In this case
Fo®) =/o(b)- (68)

After some simplification, we obtain
9(p®=872 fo“ PRdP{8s(P)A,(P) +14A,(P) + 56A,(p)
= 84A,,(P) +42A,,(P)] + 4iv (P)(P/m)[ B,(P)
~8By(P) +18B,,(P) - 12B,,(P)]}. (69)

The double integral in the right member of Eq. (69)
was evaluated by Euler—Romberg integration on the
University of Auckland Burroughs B6700 computer,
until successive estimates agreed to within one in 10°,
For very small u?/m? the range of integration for x
was divided into two, to allow for the rapid change in
x/z a8 x— 0.

The results are summarized in Fig. 6, where A;/2,
is plotted against u2/m? on a log—log scale. The ap-
proximate expression
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FIG. 7. The fractional change in the coupling parameter as
a function of the exchange mass for Kummer’s solutions
(j=0,9=2).

2 2
AT 7,5 -4 (84,27+24.891n J‘—z) (70)
m m

which is fitted to the values of » when p*/m?=0, 107
and 10°°, gives good agreement in the range ;%/m?<
0.005 (i.e., u/m <0,07). For larger values of u?,
9 (u?) is substantially smaller than ¢ (0), and thus the
perturbation assumption is no longer appropriate.

We note that expression of Eq. (70) for X varies more
rapidly with small p2 than is the case for the simplest
solution to the scalar—scalar BS equation.!® This
arises principally because the integrals A and B, vary
more rapidly with u? as v increases (for the scalar—
scalar solution, »=3),

(ii) Kummer’s solution

The solutions for j=0, g=2, J=1, J;=0, P =z1,
may be written, to within a normalization factor {the
superscript denoting the eigenvalue of 7, for a fer-
mion—fermion system), as

Fo==2il[Gropy + a0 abs = sps) + (03 + by,

+ 20" —ubl oy sy ~ pyysy.) (71)
and
Fo= =20 L0 p,= Yo Wby +Yabe) = D3+ p2Wyyv.)
+ (207 =u®)lpiysys ~ pavsval. (12)

Only the A sector terms contribute to ¢ (%), since
I'*(=T,) yields zero when acting on a T sector matrix.
For both f§ and fg,

9(u?) =81~ PAPP*2u" - u®)(Ag ~24,). (73)

Using the same methods as for Keam’s solution, we ob-
tain the results summarized in Fig. 7. In this case x
may be approximately expressed as

2
AZ 7.5 - £ [15.14 +7,20 In(u?/m?)] (74)
m

for u2/m?<10°%, We note that the variations of » with
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p? is less rapid, and the expression is a more accurate
approximation, than is the case with Eq. (70).
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APPENDIX: HEUN’S EQUATION AND KUMMER’S
SOLUTIONS

We transform Eq. (35), using as independent variable
u = (1 + Pz/;n:)'1

=1 +8)(1+5)*+ 03], (a1
and defining F by
T= (ul)(ud)/2(1_u/)-(2j+8)/2F(u/)’ (Az)
where
p=[8x+ (25 +2)2]/2 (A3)
Thus we obtain Heun’s equation'®
2 -
dFZ(L 5, ¢ \dE . _apu o
du’ w  w=-1 w-=bldw w -1 ->d)
(Ag)
where
2
b= [1 - fglz] -1,
amh o, pmbo(jen,
€=0, q:b[aﬁ-zx ’-’fﬁ(1+’ﬂ)]. (A5)
md a
We consider a solution of form [cf. Eq. (10) of Ref.
(19)].
Fu)= -1 25 a, ()™, ap=1. (A6)
m=0

If the series converges for [0, 1] then this solution
gives acceptable behaviour of g(P) for P— 0 and P =,
The recurrence relation for the series is

Amam—l + Bmam + cm+l.am+1: 0 (A7)
where
A =(m-1)(m-2)+@2+y-5)(m~1)+ap +y(1-0),

m=1,2,--¢, (A8a)
B, =—{(a+1)m(m=1) +{a(@ +y~8) +7v]m + g + ay(1-6)},

m=0,1r., (A8b)
Coa=alm+1)(m+y), m=0,1,++-, (A8c)
The condition for convergence for u'<(0, 1] is'®
By=4q,C; (A9a)
where
h=- 1_31—?‘14_5—
3:-—2_ . (A9b)

The infinite continued fraction g, may be evaluated
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approximately by numerical means, and a search made
for zeroes in B, ~¢,C;. This was done for several val-
ues of m,/m, and j, and in each case the eigenvalue A
agreed with that obtained in Sec. IIB (iii) to the accuracy
expected.
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Kinks, homotopically nontrivial lightcone fields on R * can be black holes without curvature singularities,
satisfying the weak energy condition. Kinks and all other spherically symmetric stationary spacetimes on

R* with roots of gy have incomplete geodesics which need extension. For simple roots the Kruskal extension
method works and the topology around each root is that of the Kruskal manifold. For multiple roots

another extension method is given, based on symmetcy, and another topology.

I. INTRODUCTION FOR THE VISUAL
IMAGINATION

Kinks in the gravitational field arise in the homotopy
classification of spacetimes on a given topology, in the
search for conserved particlelike structures in general
relativity, in the study of the spin of the nonlinear
gravitational field, and as possible internal structures
for black holes. The present work studies the properties
of some simple examples of kinks as orientation for
more general considerations, just as the detailed study
of the Schwarzschild solution was important in the de-
velopment of the theory of black holes. A typical
spherically symmetric stationary kink is illustrated in
Fig. 1.

The kink"? spacetime in Fig. 1 has lightcones
tumbling over and up again: starting asymptotically
Minkowski at infinity; gradually turning toward the
center so that they are upside down, that is, future to-
ward —{, at »=0; and turning back up symmetrically
on the other side. Radii with lightcones pointing toward
the center are trapped; nothing can escape. Timelike
and null geodesics falling radially toward the center
gradually turn to the side and then backwards, travel
toward - £ in the middle. There are no anomalies: The
lightcones retain their topology; there are no curvature
singularities; background topology is R1.

Can a physical source cause such a configuration of
lightcones? In Sec. III the curvature is computed and a
mass distribution given such that the stress tensor
obeys the weak energy positivity conditions. Part of this
problem was solved by Williams and Zia. *

There is a problem common {0 many spacetimes:
incomplete geodesics. At certain radii the lightcones
are turned so that one branch is parallel to the ¢ axis,
and there are null geodesics parallel {o the { axis at
those radii. In Fig. 1 there are two such radii, duplicat-
ed on the other side of » =0, In one direction nothing can
cross such radii; Fig. 1 is a black kink, so that nothing
can get out of the middle. Near such a one-way surface
there are three sets of null geodesics: those that cross
the surface, those that stay in the surface, and those
that approach but do not cross. The last category are
all incomplete, The others may or may not be.

Incomplete geodesics in an otherwise acceptable light-
cone field on a manifold, within local field theory, con-
stitute no reason to extend the geodesics or the mani-
fold. But general relativity is not a local theory: Geo-
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desic incompleteness and topology of the background
manifold are both global considerations. And in general
relativity geodesics have physical meaning. If they are
incomplete, test particles fall off the edge of the mani-
fold in finite proper time, or finite affine parameter. So
it may be assumed that a manifold with incomplete time-
like or null geodesics is never the full physical mani-
fold, though we do not learn this from Einstein’s field
equations.

It is not possible, given half a geodesic, to find the
other half; information about the rest of the universe is
unavailable. Buf certain simple assumptions can be
made which lead to extensions which indicate the kind
of phenomena that may occur. For example, the null
manifold may be assumed to be composed of two copies
of the given part joined along a surface in such a man-
ner that there are no shock waves or other violent
physical indications of the juncture,

This kind of extension is performed in Sec. VI on the
kink of Fig. 1. First, each one-way surface is consid-
ered separately, as in Figs. 2(a) and 2(b). Each patch
in Fig. 2(a) or 2(b) is half af the patch below it in Fig.
2{(c), the half with time appropriately oriented toward
the future and not crossed by the U axis. Both the ¥/ and
V axes are at the radius of the one-way surface, The U
axis is at f=—, Any null geodesic in a UV plane is
parallel to either the U or the V axis. Null geodesics in
Fig. 2(a) or 2(b) parallel to the { axis in the one-way
surface transform into the V axis. Null geodesics cross-
ing the one-way surface transform into lines crossing
the V axis, parallel to the U axis. Incomplete null
geodesics approaching the one-way surface but not
crossing transform into lines crossing the U axis,
crossing f=— « into the new region, the added isomorph,
the new sheet, ¢ increases from — « in each sheet away
from the U axis: Time is backward in the other sheet.

In each sheef there is one region of v less than the
one-way surface radius and one with v greater, 7 is

FIG, 1, Kink: —, timelike line; --~, null geodesic.
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a) averlapping patches in rotation coordinates (3)
1 t

future T

FIG. 2. Kink extended.

constant along hyperbolae as indicated. The two UV
patches overlap between the two-oneway surfaces in

the original sheet. Hyperbolae 1, 2, and 3 are all at the
same radius, between the radii of the one-way surfaces.
Hyperbolae 1 are in the original sheet; they are to be
identified since they are two transformations of the
same line of constant » in the original sheet. Hyperbolae
2 and 3 are in two new sheets. They may be identified
or not. The manifold continues across hyperbolae 2 and
3. Identifying them provides a continuation. If they are
not identified, there will be three sheets total, and
perhaps more if there are additional one-way surfaces
in the new sheets.

The original {7 plane is stationary. Since each half of
the UV plane differs from the #» plane only by a co-
ordinate transformation, each half of the UV plane is
stationary also: A consistent flow can be defined along
the lines of constant . But the full UV plane is not
stationary; the flow contradicts itself at the center.

A spacetime with one point gravitating source and no
other fields has only monotonically turning lightcones,
turning on through the one-way surface. A quite differ-
ent situation arises when the lightcones turn back up
inside the one-way surface as in Fig. 3(b). This is the
case in the Reissner—Nordstrom solution when the
mass is equal to the electric charge and when a
gravitating sphere has its radius equal to its Schwarzs-
child radius. These two examples are akin: the Reiss-
ner—Nordstrom solution has a distributed mass source.

The two one-way surfaces of Fig. 3(c) are extended
in the UV patches of 3(d). By changing parameters the
one-way surfaces can be made to coalesce: 3(c) deforms
into 3{b). 3(b) cannot be extended by the same method
as Figs. 1, 2, and 3(c). The one-way surface of 3(b)
can be removed by changing parameters: 3(b) deforms
into 3(a). 3(a) does not need to be extended. The ex-
tension of 3(b) will be of an intermediate topology to
3(a) and 3(d). Regions which deform and extend into
each other are marked with the same capital letter.
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a) €<0Q '

c) €>0

R
.

\\\ 6-'/ n
d) extension of @

LN }

r=,_along both axes

N\
r=r,,0long both axes A

FIG. 3. Double root and its deformations.

3(b) extends in Fig. 4(a). The two sides of the one-
way surface in the original spacetime are marked 1 and
2. The new pieces of the manifold are isomorphs of the
old. They are labelled by », according to the side of the
one-way surface at #;,. Null geodesics crossing # are
drawn as horizontal dashed lines. Geodesics formerly
incomplete cross into new areas of the manifold, region

a)even root in an area of !|>O (3b) b) even root inanarea of 3<0

c) odd root with AP0

N 1 t !
4 3 [ 2
I
)
I
| T<h I' I_r<r.

o, boundary between regions
~=— other null geodesics

FIG. 4. Symmetry extensions for white multiple roots.
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3 FIG. 5. Symmetry extension for
R S . a black simple root with ¢’ >0.

3 or farther; null geodesics formerly incomplete are
vertical dashed lines. New piece 5 can be identified
with region 1. Then the extended manifold becomes a
kind of cylinder. No identification need be made; new
pieces can iferate, piece 6 and on.

The other extended manifolds in Figs. 4 and 5 can be
understood by a similar transformation of geodesics.
All null geodesics in the #» plane are parallel to those
drawn as dashed lines. All null geodesics crossing the
one-way surface are horizontal in Figs. 4 and 5; all
null formerly incomplete are vertical, crossing lines
of infinite {. For odd roots the identification of regions
5 and 1 has already been made, hence the nonappearance
of region 5. Figures 2{c) and 5 are extensions of the
same kind of root by this method and by analytic exten-
sion. They are the same.

It is possible that the essentials of extensions and
their topologies depend on spherical symmetry or
stationarity. These assumptions are, however, no
more unreasonable than the assumption that half the
universe is a copy of the other, and are made to
simplify the problem. The answer is interesting as an
indication of physical possibilities. If the original mani-
fold is analytic, the symmetry extension is an analytic
extension,

1. KINKS"2

Models of our spacetime commonly have physical im-~
possibilities such as incomplete geodesics or curvature
singularities. Perhaps the only physically plausible
spacetimes are those with nontrivial topologies, either
of the lightcone field or of the background manifold, or
both,

For example, the Schwarzschild solution,
ds®=¢df - (1/5)dr? - ¥  dw? (1)

with £=1- 2m/¥ and where dw?=d¢* +sin’6d¢?, which
is used to compute the properties of spacetime near the
sun, both has incomplete geodesics approaching v = 2m
and, in form (1), has a singularity in gy at » =2m, the
lightcone collapses [Fig. 6(a)]. If the Schwarzschild
solution is transformed to Eddington? form,

dst=rdff +2(c£ Vdtdr+ (££2)dr? - v dw (2)

so that the coordinate patch extends to » =0, there is
still a real singularity, a curvature singularity, at »=0
[Fig. 6(0)].

Inside » =2m the lightcones can turn back up or con-
tinue turning all the way over. The interior Schwarzs-
child solution has the former possibility; the latter in-
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volves a kink., To see the rotation, transform the
Schwarzschild solution into

ds? =cos2a (df - dr?) + 2 sin2a dt dv — ¥ dw?, 3)

where a(7) is the angle of turning of the lightcone in the
tr plane, gives cos2a =1~ 2m/7. The patch now ends at
7 =m, where cos2a =-1; a cosine cannot get any small-
er [Fig. 6(c)].

The coordinate system (3) unnecessarily restricts the
Schwarzschild solution; the Eddington form covers
more of . But (3) is suggestive: Let « continue to in-
crease as 7 decreases part ¥=m until a=7 at =0
(Fig. 1). The resulting manifold has homotopically non-
trivial lightcone field, and has one kink:

Consider spacetimes which are cross sections of a
fiber bundle, where the background manifold is S®xR
and the fiber is Sj,;, the manifold of symmetric
matrices of signature 1—3, The cross sections will
have equivalence classes, homotopy classes, according
to winding number arcund S;. This winding number is
called the kink number (or topological charge).

Matter enters the trapped region inside cos2a =37/4
and flows into the past in the black case, for the minus
sign, and in the white case, the plus sign, it flows
radially outward from the future. A single kink has no
timelike loops and no global Cauchy hypersurface.

It is not at all clear that such a construction will have
a physically acceptable stress tensor.
111. PHYSICALLY PLAUSIBLE KINKS: CALCULATION

The Einstein tensor for the kink (3) is computed to
check the physical acceptability of the stress tensor.
The tetrad procedure is described by Flanders® and
Misner. " The kink tetrad is

w’=cosadt - sinadr,

o) usual coordinates (1}
'

;
]
I
|
r=2m
end of patch

X

<z
N

b Eddington coordinates (2)
' '

4.9
S

Vises

end of patch

c) rotation coordinates (3)|
t

n\/\ﬁ <
DALV AVE AR

co82x<-] .

Z 2
VA NVA

end of patch

FIG. 6. Schwarzschild line element.

D. Finkelstein and G. McCollum 2252



w! =cosadr +sinadt,

w?=7rdé,

4)

wi=7sinbdo,

v=0 1

uw=0 0 - alcosaw! - ol sinaw

1 - alcosaw! -~ ol sinaw’ 0

2 - (1/7) sinaw? (1/7) cosaw?

3 - (1/7) sinaw (1/7) cos aw®

And dw,”* - w*, ©,%=3RL W\ gives:
ng:[cosza]", (6)
RYqy = Rijp = RYg3 = Rbyy = - (1/7)[cos2a]’, (7)
Ry, =(2/7%)[1 - cos2a]. (8)

It is convenient to introduce a function
w(@y=(/2)(1 - cos2a). (9)

This is the function f of Williams and Zia.® Then the
nonzero components of the Einstein tensor can be
written simply:

4 du
G=C" =5 gy -
2 d*u
Gzz=Gas=;d—,§- (10)

The indices refer to the tetrad but could as well refer
to the £,7, 8, ¢ coordinate system since G%: GY,. Choose
units and signs so that the gravitational equations are
G4 =T*, with stress tensor T. Then

p.zifOr')’zTOod?’. (11)

The choice of u(r) for gravitational field variable
linearizes the gravitational equations. u(») measures
the gravitating mass within the sphere of radius ». The
simple relation (9) between the mass and the angle of
tilt of the lightcone a(r) was obtained by Williams and
Zia, For empty spacetime p =const,

There are several physical conditions on p. For (3)
to be physical we demand that for arbitrary timelike
n*, T, n"n’ be nonnegative and finite everywhere,
Necessary and sufficient conditions are

(a) u must never decrease (as a function of 7 in
0sr< 00)7,

(b) 7’1’ must never decrease,
() u=0@% atr—0,
@ 0sp/r<1,
because
(a) taking 7 =w" gives 7% = (4/7*)(du/dr)> 0,

(o) taking » an arbitrary timelike linear combina-
tion of ' and w? gives 0< T+ T2, = (2/7°)(d/dr)
X2 d/dr),
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where

ds? = (W) = (w!)? = ()2 = (W*)°. (5)

Taking dw” :w,,“/\w” gives the matrix of 1-form w,*:

2 3

3

- (1/7) sinaw? - (1/7) sinaw

- (1/7) cosaw? - (1/7)cosaw®
0 - (1/7) cotbw®
(1/7) cotbw® 0

(c) T* would blow up at the origin if p were not
oY),

(d) this follows from (9).

For the simplest kink, cos2a goes to 1 at 0 and o,
and to — 1 with zero derivative at some 7.

One function satisfying these criteria is

1 :(5131—/7—) 3. (12)

This defines a kink with physically reasonable stress
tensor in the entire {7 plane. Mass is concentrated at
the center. u(»), the mass inside radius 7, becomes
constant as 7 — =,

The condition that leads to (a)—(d) is the weak energy
condition. The stronger energy condition, that R n“n"
= 0 for all timelike n*, is violated by (12), which ex-
hibits strong azimuthal tensions near »=0. A kink of
the following more general family may be still more
physical.

IV. TRANSFORMATION TO STANDARD FORM

To consider trapping, incompleteness, and extension
in general for spherically symmetric stationary space-
times on RY, it is convenient to transform to a standard
form such that any two spacetimes equivalent under
coordinate transformation are equal in standard form.
The standard form should have no unnecessary singu-
larities, like the ones in the Schwarzchild form. The
rotation form (3) is too restricting. The Eddington form
(2) is linear in £, no spurious singularities or unneces-
sary restrictions. But there is a simpler form to choose
as standard:

ds® =g df + 25, dE ) + gpy dW?, (13)
where B and ¢ are functions of ¥, x;=+1, and gqy = —7°
except in neighborhoods of extremal 7.

The most general spherically symmetric stationary
spacetime can be written

ds? = g (Ax%)? + 2g41 dx" dx' + g4 (dx')? + ggp dw?, (14)

where g,, is a function of x! alone. (14) contains four
arbitrary functions, gq9,841,&11,&22, but admits a group
of coordinate transformations
+07 :nxo N aO(xi),
xlr:a1(x1) (15)
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with two arbitrary functions of x! and an arbitrary con-
stant 17, and hence can be brought to standard form (13),
which has only two arbitrary functions:

In standard form, g, is no longer an arbitrary func-
tion of x!. Transform (14) by ¥! = such that gy, = — 7?2
where possible, where V- g,, is an admissible co-
ordinate. Around extremal g,,, that is, in neighborhoods
of x,! such that gy, ;(x,!) =0, and in areas of constant
&, transform x!—7 so that

V= 8aa = (v = 7o) + V= g99(7)

and p is minimized.

(16)

For convenience of future transformations, factor the
x" bloek so that the determinant of the quotient is - 1;
that is,

ds?=e[g(dx") + 2k dx" dr + L dr?] + goy dw?, 1n)
where
g —-k2=1 (18)

and 8, §, k, and . are functions of # alone. Transfor-
mation preserving this form leave ¢ fixed within a sign,
but can change x and (. If (17) is supposed linear in ¢,

ds? =e® (L df? + 2(\L + k) dEdy + (VL + 20k;) dr?] + gop dw?.
(19)

Eddington chose A =1, the simplest choice approaching
Minkowski when £ —1. 2 =0 is the choice for the stan-
dard form (13), given from (17} by the transformation

,
xo:t_/ K=Ki g
, ¢

where k; is the sign of x at a root 7; of . One co-
ordinate patch with appropriate x; will surround each
root of &; each root of £ must have a rootless neighbor-
hood, The Schwarzschild manifold can be extended
through its root of ¢ with either sign for «;.

(20)

That standard form (13) is accessible only patch by
patch is not an inelegance but the main point. Only, but
not all, spacetimes of zero kink number are covered in
one patch. If neighboring roots are of different «;, they
belong to different patches. It will be convenient also to
divide adjacent roots of the same k; by patch. Standard
form (13) draws attention to root surfaces, which is
appropriate because incomplete geodesics approach root
surfaces. Root surfaces are trapped surfaces and
boundaries of trapped surfaces.

V. COORDINATE CONDITIONS

Coordinate conditions facilitate the discussion of a
general class of spacetimes, but raise the question, are
the results special to the coordinate system? A space-
time symmetry or characteristic is invariant if it con-
sists in the existence of coordinate system displaying
such a symmetry. For example, a spacetime is spheri-
cally symmetric if it admits a coordinate system of the

form
ds? =g (dx")? + gy dx° dx' + g1 (dx ') & ggp dw? (21)

where g, is a function of 2 and x!. If a spacetime
admits such a coordinate system on only a part of the
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manifold, it is spherically symmetric only on that part.
If it admits one globally, or in overlapping patches, it
is all spherically symmetric. Further, coordinate con-
ditions may result in a coordinate system exhibiting in-
variants of the spacetime. For example, in the spheri-
cally symmetric coordinate system of (21), the number
of zeroes of gy, is an invariant of the spacetime which
may be displayed by requiring that g, = — (x!)? except in
neighborhoods of x!, where oo, 1(xé) =0. Then each x} is
a special case, listed separately in an atlas of the
manifold.

The standard form (13) is chosen for both reasons.
The spacetimes considered are spherically symmetric
and stationary. The form (14) is chosen to display the
restriction to spherical symmetry. g,, is a function of
x! alone because the spacetimes considered are in-
variant under time translation: x° is chosen to be the
direction of invariance under translation.

Beyond spherical symmetry and stationarity, there
are no restrictions placed on the class of spacetimes
considered, except that they have background manifold
RY. The rest of the coordinate conditions are imposed
to display particularly interesting characteristics of
each spacetime,

The problem of incomplete geodesics involves sur-
faces of g,,=0, root surfaces, stationary characteristic
surfaces. For this reason, the root surfaces are singled
out by the standard form, separated one to each patch.
To count kink number, it is sufficient to know two signs
and an indicator for each root in order: k;, the sign of
gy at a root of gy; fi, the sign of &% in the direction of
future; and Ag;, the change in ¢ at »;. For simple roots,
Ag; is the sign of £’'(7;). For even roots, Af;=0. For
odd roots, Ag; is the sign of the change in ¢ as 7 in-
creases through 7;, For a qualitative picture of the ex-
tension near a root, like Figs. 2(c), 3(d), 4, and 5, it
is sufficient to know &;, f;, Af;, and the order of the
root,

Kk; is evident when the spacetime is written in nor-
mal form. f; is known for one patch, usually patch 1 at
P, and must be followed through the rest of the patches.
After g,, is standardized and e2® is divided out, ¢ is left,
the only arbitrary function in the ## block. Each root
must be examined for the order and Ag;.

The same k;, f;, A&;, and order of the root would be
found by analysis of any spacetime in the form (14),
without imposing any more coordinate conditions, as
would be found by first transforming to standard form
(13) and then analyzing: They are invariants under co-
ordinate transformation for spherically symmetric
stationary spacetimes.

Functions of invariants are also invariant. Kink
number was defined in Sec. II without reference to co-
ordinate system; it is a property of the manifold, Kink
number can also be counted by seeing how many times
the lightcones tumble in the 7 plane. Pictures like Figs.
1, 2(a), 2(b), 3(b), and 3(c) can be drawn qualitatively
from k;, f;, and A, alone; then the number of whole
turns can be counted,

The order of the root is also an invariant: The
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topology of the extended patch is invariant because it
depends only on the order of the root. Many other prop-
erties of the extension depend further only on k;, f;, and
AgZ;, so that they also are invariant.

VI. TRAPPED SURFACES AND INCOMPLETE
GEODESICS

A shell of light emitted normal to a spherical surface
of constant 7 grows or shrinks in surface area as
V- g5, increases or decreases in the direction in which
the light is emitted. I g,, is constant, the surface area
of the shell of light is constant. If V- gy, has a minimum,
the shell grows no matter in which direction in 7 it is
emitted; if V- g3, has a maximum, the shell can only
shrink. A trapped surface is one from which a shell of
normally emitted light either can never grow or can
never shrink, A surface of extremal V- gy, is always a
trapped surface.

Trapped surfaces also occur where the future part of
the lightcone points in only one direction in . There
matter can flow in only one direction in 7. Since the
boundary conditions are time-symmetric, static, this
appears as a spontaneous break in time symmetry, !
For the standard form (13),

ds=¢dtf? + 2k; dtdr
=dt(gdt + 2k, dr)
=0 (22)

gives the lightcone in the #» plane. d7 is always null,
The other branch of the lightcone approaches d¢ as 7
approaches a root of {. There is a simple physical dif-
ference between the odd and even roots of . At odd
roots of ¢ the turning branch of the lightcone rotates
through the df direction, and there is an interval in 7
of trapped surfaces on one side of the root, where df is
spacelike, where £ <0. At even roots of ¢ the branch
only touches df; even roots never bound regions of
trapped surfaces.

The direction in 7 of the positive f half of the light-
cone at a root of ¢ is given by «;: k; =— 1 when it points
toward decreasing 7; k; =1 when it points toward in-
creasing ¥, If f is the sign of f pointing toward the
chosen future and v- gy, is not extremal at a root of g,
then fx; =1 indicates a white hole and fk; =— 1 a black
hole.

Roots of ¢ are accompanied by incomplete geodesics,
For the standard form the geodesic equations restricted
to the {7 plane reduce to

B (B, 5+ 3K, ) (E)2 =0,
(e + S o) (82
¥ 2(BK;E + 3K, E ) EVEL 4 287 (81 =0,

where x* = £*(s) is the equation of the geodesic, é“ is
the derivative with respect to an affine parameter s,
and ¢’ =dg/dr.

(23)

There are three sets of null geodesics:
1. Those parallel to the 7 axis,

£ =const, &l-= [ be?Pgs, (24)
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where b is a constant.

2. Those parallel to the ¢ axis at a root of {,
(25)
(26)

‘51:1’19
£=£1=0

with & depending on the order of the root. For simple
roots,

£° = (Inas)/a, 1)
where

a=- 31,8 (ry); (28)
half the geodesic is missing. For multiple roots

£ =s; (29)
the geodesic is complete.

3. Those approaching 7; but not crossing, going to

I* rather than ¢*,°

£ =-2;0 [ (e/t)ds, £'=[ be?ds (30)
The sign of £° as ¢! approaches 7; is given by

sgnt® ~ —k;sgn(L - £Y) as £ -7, (31)

For geodesics 1 and 3, radial null geodesics, when
B=0, 7 is an affine parameter. Since any /7 block can
be transformed into standard form without changing the
determinant of the # block, and affine parameters are
invariant under coordinate transformation, this is a
general result: if the f» block of a spherically sym-
metric stationary g,, has determinant ~ 1, then radial
null geodesics have the radial coordinate as affine
parameter,

VII. EXTENDED KINK

The kink of form (3) already has gy, =7° and # block
determinant — 1, so that it can be transcribed directly
into standard form (13) with £ =cos2a@. There are two
roots; for indexing, let > 7,. Choose the black kink of
Fig. 2, so k;=-1, and in patch 1

ds?=cos2adPf - dtdr - R dw?, (32)

The second root surface is also black, but -/ is future
at 7,, f=—1. See Fig. 2(b). So x,=1. There are no
further roots for positive 7.

There are incomplete geodesics approaching each
root. For each root all incomplete geodesics go off to
17, as is evident from Fig. 1 and as is given in Eq. (31).

In order to complete the geodesics, follow the exam-
ple of Kruskal® and Graves and Brill, I and transform
the standard form (13) to the form

ds® =e®(2f2dUdV) + g,y dw? (33)
where f and 7 are functions of U and V. Then
U=-eot exp(Zlc,-o f ' %") (34)
i
V=- %e"", (35)
2f2:(17 exp ./;'g—:gﬂdr , (36)

with undetermined constant o,
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In order that 2/? be regular at 7;, let 2k;0 = g'ry). @
27? is only regular for a simple root of £. The original
tr plane covers only half of the UV plane. Extend the

iv plane by letting it also cover the other half of the UV
plane with the same ! and with ¢ reversed. Then
geodesics crossing the U axis will be continuous.

As an example take p of {12). Then

7, =5.1, &'(r,)=0.0168, o0,~-0.0084. 37)

The root is simple, so that 2f? is regular. The null
geodesics parallel to the » axis transform into straight
lines crossing the V axis. The incomplete null
geodesics approaching 7, and 7~ transform into straight
lines crossing the U axis; V{I7)=0. [Fig. 2(c)].

There are both timelike and null geodesics crossing
the U axis. Although only null geodesics were enumerat-
ed, both timelike and null have been extended.

In patch 2 where %, =1,

7,=0.25, ¢'(ry)~—4.96, o;~-2.48. (38)

The orientation of the U,V, plane should be taken con-
sistent with future toward —f{. Again V(I7) will be 0.
Now 0 <0, so that 22 <0, and so positive U and nega-
tive V are future.

Two new sheets have been attached or recognized.
They may be separate and ramify to many more sheets,
or they may be identified, a total of two sheets, Mani-
folds with higher kink number may need more
extensions.

While there is no natural law of composition for g,,’s,
group elements of GL(4, R) have a product. This dis-
tinguishes a combination of two one-kink manifolds to
make one two-kink manifold: multiplication of group
parametrizations. In general, kink numbers add when
the group parametrizations muiltiply. For (3)’s, group
composition reduces to o addition.

A continuous process creating a black kink and a
white kink from an originally kinkless spacetime can be
constructed: 0=1-1, Their formation can be pictured
as a pulling apart or as a nesting of spheres within
spheres like an onion, as in Fig. 7. An onion (3) of
monotonically increasing ¢ is unphysical: 1 would de-
crease, violating condition {(a). So for a physical (3}
of monotonically increasing «, at most two extensions
are necessary,

VIHI. MULTIPLE ROOTS

Neither the most general kink nor the most general
spherically symmetric stationary spacetime on R! has
been extended; multiple roots have been excluded. Since
any two-dimensional manifold is conformally flat, local-
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FIG. 7. Onion,

ly any spacetime becomes (33) under some coordinate
transformation. To find that transformation from the
standard form (13), set

cdtt + k;dtdr =2f2dUdV,
dU=U,dt+ U,dr,
dV=Vdt+V,dr.
Then
2f2U,V,=¢,
of UV, + V,U,) =k,
22U, V,=0.
Without loss of generality choose V,=0. Then
U,=k;¢U,

(39)

(40)

(41)
and
V=v(t),
U=Ut+ [k dv/0),
2ft=t/U,V,.

The problem is to choose U so that 2f? neither vanishes
nor blows up.

(42)

If the root of ¢ in question is n-fold, »>1, choose

V=t, U= t+fr@ .,’ (43)
; &
where
p=1/(n-1). (44)

A transformation to these coordinates is a restriction of
the manifold, not an extension, since U -+« for finite
values of £ and ¥ in the original coordinates. The lower
limit of integration may be set so that U— 1« in both
directions of V, or it may be chosen to leave U finite

at the edge of the patch of original coordinates without
an extension of the manifold.

In the case of a simple root of ¢, form (32) provides
the extension. If » were 1 in p of (44), p would blow up,
suggesting the necessary exponential of (34)—(36).

Discussion of an even root, the topology of the mani-
fold and the configuration of the incomplete geodesics,
clarifies the problem of multiple roots. Consider the
tr block

ds?= (£ - €)di? +didr, (45)

where ¢ has an even root at 7, and ¢ > 0 around 7, (Fig.
3). For negative € there is no root. As ¢ —~0 from below,
the lightcone at 7, tilts until, when €¢=0, one of its
branches is df and gy, has a root. As € increases {rom 0,
the lightcones tip farther so that there are roots at 7,
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and 7,_, both of odd order. For €<0, the manifold needs
only one sheet; for € > 0 two tunnels to a new sheet are
added: €=0 is the boundary between topologies.

Two planes used to extend the €>0 case are shown in
Fig. 3(d). As €—~0, 7,, and 7,_ approach 7, and the 7,
hyperbolae approach the U and V axes. In the limit the
axes of the two planes will be identified. But the two
roots differ in an important respect, the sign of £ as
the incomplete geodesics approach the roots. For odd
roots, all incomplete geodesics go to the same in-
finity of £, which then becomes U'=0 in the UV plane.
For even order roots some incomplete geodesics go to
I* and some /"~ as they approach the roots, so that no
consistent sign choice ean be made for the U axis.

Another extension method and, it turns out, different
extended topology will be needed for multiple roots. The
method works as well for simple roots, and gives again
the UV plane.

IX. SYMMETRY

The Schwarzschild solution is invariant under co-
ordinate £, { — —{. Stationary spacetimes are invariant
under a time translation and not necessarily under a
time reflection. But the Schwarzschild solution also can

be written in coordinates without x° relection invariance.

When do stationary spacetimes have a time-reflection
invariance hidden by a coordinate transformation?

Transformation to Eddington form extends the region
of regularity of the Schwarzschild solution past v =2m
to » =0. The Eddington form lacks f-reflection in-
variance. What in the transformation breaks the in-
variance? A choice of a sign must be made in the trans-
formation from Schwarzschild to Eddington, a choice of
the sign of gy, the color of the hole. This is the break-
ing of the invariance.

In the Schwarzschild solution, Fig. 6(a), there are
two sets of incomplete null geodesics in the £ plane
approaching # =2m, one set approaching /* and the
other approaching I”., The two sets of geodesics are re-
flected into each other by a #-reflection. Under trans-
formation to Eddington coordinates, Fig. 6(b), one set
of geodesics remains incomplete by approaching but
not crossing 7 =2m. The other now crosses v =2m,
Which set crosses 7 =2m depends on the choice of sign
in the transformation.

If the Eddington form is transformed back to
Schwarzschild and then back to Eddington but with the
opposite sign, a kind of reflection has been made: The
original and the transformed Eddington forms differ
only in the sign of £. The null geodesics crossing » =2m
have been transformed into null geodesics approaching
but not crossing.

Transforming back and forth between Eddington and
Schwarzschild is not a proper sort of operation, be-
cause the Schwarzschild solution is not meaningful for
¥ <2m. The transformation can be carried out between
the two Eddington forms with opposite signs of g,;, with-
out Schwarzschild for intermediary. But the transfor-
mation still blows up at # =2m: The time reflection
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symmetry survives outside ¥ =2m and inside, but not
at 7 =2m.

Any spherically symmetric stationary spacetime ex-
hibits the same symmetry, and the same symmetry
breaking when g,,=0. This is easy to show when the
spacetime is written in standard form (13), or in other
forms without unnecessary singularities.

X. EXTENSION BY SYMMETRY

The fact that the given manifold is almost piecewise
static but not static can be used to extend the manifold
when writing in the form (33) fails.

If the transformation

t——t+ [ tydr, t,=t,0), (46)

is required to take (13) into itself, Z, is determined:
== 26,/8. (47)

t, belows up at 7; only: The transformation may map one
side of the root into itself, but not both. Identify the
original ¥ >7; region with the new » > #; region. Then

a new 7 > ¥; region has been found and the manifold has
been symmetrized with respect to (46). A similar sec-
ond transformation applied to the new 7 <7; region gives
a new 7 >7; region, which cannot be identified with the
original. A third transformation gives an ¥ <#; region
which can be identified with the original. In this way
two v >7; regions and two ¥ <7; regions are covered.

The boundaries between regions are the null geodesic
parallel to the ¢ axis at 7; (25) and (29). In the case of a
multiple roots, all the null geodesics are complete in
this new manifold, a cylinder cut off along » =0 crossed
with a sphere (Fig. 4). This cylinder is the boundary
topology between the half-plane of Fig. 3(a) and the two
planes identified along 7, of Figs. 3(c) and 3(d). Regions
which deform into each other as € changes have the same
capital letter. For a simple root, the null geodesic (25)
and (27) remains incomplete. Let the first »; boundary
be the positive s; axis, the new boundary after one
transformation be the negative s, axis, the new bound-
ary after the second transformation be the negative s,
axis, the new boundary after the third transformation be
the positive s, axis (Fig. 5). Add the point s,=s,=0.

Let null geodesics crossing the s; (s,) axis be lines of
constant s; (s;). All the null geodesics are now com-
plete for an odd root in a manifold of the topology of the
Kruskal-like UV plane.

The above method demonstrates the existence of an
extension with a change in a topology of the manifold at
each root of ¢ isolated in », Further, the topology of an
¥ interval of the extended manifold depends on the mul-
tiplicity of the root, R xR xS? becoming R?XS? for sim-
ple roots and R xS!xS? for multiple roots.

The Reissner—Nordstrom solution has

£=1-2m/7 +el/y? (48)

with a double root when m =¢. The # block determinant
is already — 1 and gy, =— #%. Call the root radius 7,. K,
may be chosen to be either sign for the transformation
to standard form (13). For x,=-1, a black one-way
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surface, an inward lightcone field turns back up just in-
side 7; an outward field turns back up for k,=1, white.
For x,=1 the root looks like Fig. 3(b) and the extension
looks like Fig. 4(a). For x,=—1 the root is a f-reversal
of Fig. 3(b). The incomplete geodesics approaching 7,
from above approach I/~ rather than I*. Future is toward
positive ¢, but toward decreasing 7 rather than increas-
ing. The extension steps in the opposite direction from
future, toward negative ¢ and increasing 7.

XI. TIMELIKE GEODESICS

Only null geodesics are enumerated in Sec. VI. Only
their affine parameters are given. That is because the
affine parameters of the null geodesics, specifically of
the ones at 7;, determine the topology of the extended
manifold. The physical nature of the extension is much
clearer if timelike geodesics are extended also.

In Fig, 5 it is easy to see that there are timelike
geodesics continuing from one region to the other:
Timelike geodesics have been extended; in the original
manifold, timelike geodesics were incomplete. It is
possible not only to send light into the new sheet, but
also to travel there.

In the unextended manifold, a root surface has been
assumed to be a line a constant » and changing / crossed
with a sphere of radius 7;.

In the extension of multiple roots the root surface
retains its topology, but multiplies: There appear
several of them. The case of a simple root is
exceptional in this respect; the root surface changes
topology to two intersecting lines crossed with a sphere,

The change in topology of the root surface allows not
only null geodesics but also timelike to cross the center,
This is impossible for multiple roots.

XIl. SYMMETRY AND KRUSKAL-LIKE
EXTENSIONS

A stationary spherically symmetric spacetime on RY
with a simple root of ¢ can be extended in two ways to
a spherically symmetric spacetime not stationary and
not on R%: by the Kruskal-like extension, writing in co-
ordinates of the form (33) and extending across the U
axis; and by the symmetry extension,

The UV plane of the Kruskal-like extension [Figs. 2(c)
and 3(d)] is a plane with any null geodesic in the plane
parallel to one of the two axes.

The symmetry extension, Figs. 4 and 5, gives an
arbitrary or infinite number of regions. The first and
fifth regions are the first that can be identified; the
minimum number of regions is four. In the case of a
simple root, there are still incomplete geodesics after
the regions are proliferated. A point must be added
which continues one null geodesic at #; into the one two
regions away, as in Fig. 5.

The added point must then be covered by a coordinate
patch which overlaps the other coordinate patches, the
copies of the original patch. In the original patch, the
geodesic along 7; is crossed by null geodesics at con-
stant {. The other radial null geodesics in the ¢ plane
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all approach either /* and /- as they approach #;; they
do not cross the geodesic along ¥ =7;, but cross the
point (/*,7;). That point extends into a line in either
extension, into the U axis in the Kruskal-like extension
and into the boundary between regions in the symmetry
extension. The line does not intersect any of the null
geodesics at constant £, and so it is parallel to them.

Let the plane coordinates of a point on the boundary
between regions in the symmetry extension be (s;, 0),
where §; is the affine parameter. Let null geodesics
crossing the boundary be lines of constant s;. Then the
coordinates of a point in the extended plane of Fig., 5 are
(54, Sy}, where the two null geodesics in the plane which
pass through the point cross the two null geodesics at
v; at affine parameters s; and s,.

The UV patch and the coordinate patch covering the
center of the plane in the symmetry extension for the
simple root are the same: Any null geodesic in the
plane is parallel to one of the axes. The coordinates are
the affine parameters of null geodesics along the axes.
All null geodesics are lines of one constant coordinate.

In the one case in which the two extension methods
are both applicable, the results are the same.

Xili. EXAMPLE: REISSNER—NORDSTROM

There is a well-known example of the phenomenon
illustrated in Fig. 3, the Reissner—Nordstrdm solution.!
It is usually given as

ds?= (1 - 2n + e—z di? - dr? 7 dw?
N v 2 (1 =2n/r+e?/rd) " ’

2

(48"

that is, in Schwarzschild form (1) but with £=1 - 2m/1f
+e2/¥%, The order of roots of £ depenas on the dis-
criminant (m® - e®)1/2, If ¢ >m, there are no roots of
¢ for real . If ¢ =m, there is one real double root. If
e <m, there are two real simple roots.

In (48), g, is already £ and the determinant of the fr
block is already — 1. So (48) can be immediately written
in standard form (13) with £=1-2m/7 +e%/¥?. But k;
must be chosen. In (48), g;9 blows up at a root of gg;
the coordinate patch ends at the root of g,,. Transform-
ing to standard form (13) extends the coordinate patch
to v =0, where there is a curvature singularity. Each
extension past a root requires a choice. For ¢ > m there
is no root, no choice, and no extension, as in Fig. 3(a).

For e =m, there is one root, one choice, and one ex-
tension, as in Fig. 3(b). If f; =1 and the choice #,=1 is
made then the hole is white, as in Fig. 3(b). For a
while double root in an area of >0, the extension looks
like Fig. 4(a), with new regions added toward increas-
ing 7 and increasing 7. If the choice ;= -1 is made,
both future and new regions are in the direction of in-
creasing ¢ but decreasing 7. Two regions with the same
domain of 7 can be identified, forming a sort of cylinder.

For e <m, there are two real roots, two choices, and
two extensions. Regions in the extensions can be identi-
fied or not, a matter of choice and eventually of experi-
ment. The two roots are both simple, so the extensions
will both be planes, like Fig. 5. For Fig. 5, the choice
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x;=—1 has been made, If the choice k; =1 had been
made, the extension would wind the opposite way around
the center, and have perpendicular direction of future,
Fig. 4(c) with a point added in the middie.

In Fig. 3(c), the choice k; =k, =1 has been made. The
extension is shown in Fig. 3(d), with capital letters
labelling matching regions in the two parts of the ex-
tension and in the original patch, Fig. 3(c). Also, re-
gions in 3(b) deforming into regions of 3(c) are labelled
with the same capital letter. The deformation of the
extension of 3(b), Fig. 4(a), into the extension of 3(c),
3(d), can be followed by studying matching regions,

The choice k;=k; =—1 can also be made, and the
resulting extensions are similar, with different direc-
tions in ¢ of geodesics approaching 7; and with ditferent
direction of f. Can the choices k;# k; be made? They
correspond to a time reversal between the two roots, so
that they are contradictory. There would have to be
either another root between the two roots, or a curva-
ture singularity, or time reversal, essentially setting
the «; equal. So there are really only two choices for
the signs of the two simple roots: both white or both
black.

And there are two possible extensions, with many
possible identifications. In Fig. 3(d) the two hyperbolae
not in regions C or D can be identified or not. If they
are not identified, the spacetime must be continued be-
yond each of them. As usual, there is insufficient in-
formation for the extension. One heuristic assumption
that can be made is that the extended manifold is
several copies of the original part. Then the extension
beyond the hyperbola of Fig. 3(d) would contain another
root surface and another extension,

This work agrees in two of four dimensions with the
work of Godfrey in two dimensional spacetimes. !! 1t
also agrees with the results Carter obtained by analytic
extension!? and by an extension similar to the present
method. ¥ Carter has gone on to extend the Kerr
solution. *?
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XIV. RESULTS

Study of a convenient spherically symmetric station-
ary standard form has shown that there are incomplete
geodesics approaching every root of gy, and that the
manifold can be extended to a new sheet at every root
of g4p. The direction in time of the incomplete geodesics
approaching a root of gy, is given by (31). An extension
is given for all cases, in the Kruskal fashion for simple
roots and by symmetry for multiple roots. A simple in-
variant physical distinction between the odd roots and
the even is found, and a topological distinction between
extensions of simple roots and extensions of multiple
roots.

Kinks, trapped surface manifolds without singulari-
ties, are used as an example. A specific kink with posi-
tive energy density is put into standard form, then ex-
tended: Nontrivial lightcone field homotopy is found to
require a change in the topology of the background
manifold.

Question: Are kinks always incomplete, or does this
incompleteness stem from symmetry ?

*Based on the Ph, D. thesis of G. McCollum, Yeshiva Univer-
sity, 1975.
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Neutron transport problems in a spherical shell
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The density transform method has been extended to cover spherically symmetric transport problems in a
spherical shell. The density transform is expanded in plane geometry normal modes and explicit singular
integral equations are derived for the expansion coefficients. It is shown that the Green’s function method,
introduced by Case et al., gives the same representation of total flux. The singular integral equations for
the expansion coefficients are rederived using the analytic properties of some sectionally holomorphic

functions introduced by the above authors.

1. INTRODUCTION

The normal mode expansion method of Case! has been
applied to many transport problems. In principle the
method can be applied to any transport problem in plane
geometry by expanding the angular flux ;(x, i) in the
singular eigenfunctions of homogeneous plane
geometry Boltzmann equation. However, the expansion
coetficients are defined as solutions of singular integral
aquations resulting from the application of boundary
conditions. These integral equations can be solved only
for a few special cases. Thus strictly speaking Case’s
method replaces the problem of solving the integro-
differential transport equation by the solution of a
singular integral equation. Nevertheless, Case’s rep-
resentation gives considerable insight into the mathema-
tical structure of transport equation.

Although many generalizations of Case’s work have
been reported (including anisotropic scattering, time
and energy dependence) most of them have been for the
plane geometry problems. The straightforward exten-
tions of Case’s method to nonplanar geometries® s have
not been very successful. Mitsis,® obtained a set of
normal modes for solutions of Boltzmann equation in
spherical and cylindrical geometries whose complete -
ness could not be proved. He, however, showed that
the criticality problems of homogeneous spheres and
cylinders could be reduced to the solution of certain
singular integral equation. He also derived the same
results by starting from the integral transport equation
and the use of density transforms. ® In this method one
constructs integral transforms of the total neutron flux
that satisfy the plane geometry transport equation in the
transform variables. These transforms are then ex-
panded in Case’s singular eigenfunctions of plane
geometry. The boundary conditions for these transforms
can, in some cases, be inferred from their definition
and can be used to obtain the singular integral equations
that determine the expansion coefficients, The method
gives a useful representation for the total neutron flux
though the expansion coefficients have generally to be
obtained by numerically solving the singular integral
equations. This method is a consequence of the “re-
plication property”” of the kernel of integral transport
equation and has been exploited by Gibbs® for obtaining
a general formulation of the method for an arbitrary
convex body. In spherical and cylindrical geometries
Gibbs analysis can be used only for transport problems
in homogeneous spheres and cylinders though some
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variation in scattering properties of the medium can be
allowed for if the macroscopic total cross section is
held constant.® The general problem of particle trans-
port in spherical and cylindrical shells requires an
extension of density transform method to nonconvex
bodies. This has been done only for the problem of flux
distribution in an infinite moderator containing a black
sphere. Sahni'® transformed the integral transport
equation to an integral equation whose kernel had the
replication property. Smith!* and Sheaks'? have given
the explicit density transforms for this problem using
similar transformation,

In a recent paper Case ef al.'® have applied the
Green’s function approach to the spherically symmetric
boundary value problems of one speed neutron transport
theory. This results in a representation of angular flux
in terms of eigenfunctions of spherically symmetric
Boltzmann equation, the expansion coefficients being
related to the angular distribution on the surface of the
region. By using a reduction operator they transform
the equations defining the expansion coefficients into
singular integral equations resembling those encount-
ered in plane geometry problems. Their results, how-
ever, are correct only for some of the interior prob-
lems (homogeneous solid spheres). Indeed the solution
given by them for the exterior problems is incorrect.
This can be seen most readily from their expression
for the linear extrapolation distance for spherical
Milne problem [Eq. (122) of their paper] which is in-
dependent of the radius of the black sphere. This is
contrary to the well-known results of Davison,'* This
discrepancy stems from the use of a reduction operator
which is not appropriate to this situation.

In this paper we generalize the density transform
method for treating neutron transport problems in a
spherical shell, In Sec. 2 we show that the usual prob-
lem of solving spherically symmetric Boltzmann equa-
tion with prescribed incoming angular distributions on
the surface of a spherical shell is indeed equivalent to
assuming a black medium in the region interior to the
spherical shell. The only difference is the presence of
uncollided flux terms in the integral equation of total
neutron density. We cast these terms in a form which is
suitable for defining the density transforms that are
given in Sec. 3. The completeness property of plane
geometry singular eigenfunctions gives a representa-
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tion for the density (and hence the angular flux) while
the boundary conditions for the density transforms give
the singular integral equations for the determination of
expansion coefficients. In Sec. 4 we examine the
Green’s function method and show that it gives the same
representation of total flux as given in Sec. 3. Further
we rederive the singular integral equations for the ex-
pansion coefficients from the analytic properties of the
functions introduced by Case ef al. in Ref. 13 and ex-
plain the discrepancy contained in their paper.

2. THEORY

We consider the one speed spherically symmetric
Boltzmann equation with isotropic scattering and
isotropic sources

W, 1-p? 0y _C a4l 1
bk S Tkl )= F00) + 50 (1)
The angular flux (7, 1) depends only on the distance »
measured in units of mean free path, and u the cosine
of the angle between the position vector r and the direc-
tion of motion of neutron §. c is the mean number of

secondaries per collision and Q(#) is the source density.

The total flux (density) p(*) is given by

olr)= [ ulr,u) du. @

The transport equation (1) has to be solved for the range
a<r<band -1<u <1 with the prescribed incoming
distributions ¥(a, 1), < (0,1) and ¥(b, u), pe(-1,0).
Introducing the neutron path coordinates

£=7VI_“- y M=UY,

the transport equation becomes

2+ y(g,m) = SpVETFTD + 1 QUETT) (32)
where
P&, ) =¢(r,n) (3p)

while the domain a<#»<sb, ~1<sp <1 is transformed
into the half annulus VZ2 +nz€ (a, b), £= 0. Equation
(3a) can be easily integrated to give

$r, 1) = g, T =57/ @) expl - wr + V=720 = 119)]

+ lJ"y[cp(yHQ(y)]dy
2 Vy2 —2(1 = 12)

xexp{~|pr - Vy7 =731 =p?)|} (4a)
for \[1_——52—/—7’_2 <pu<1and
Y, w)= (b, ~ V1 - 731 - u?)/b?)

x exp{- [ur + VyZ =31 = p?)]}

N 1[" ylep(9) + @(y)]dy
2), Hrord-n

xexp{- [pr + V9?2 = 2(1 - p?)]}

’ [ep(9) + Q(9)]
+6(u) f z - ur)
— T_==m== exp( uy

. yz _72(1 - u_Z)
x cosh[Vy? — »2(1 — p?)] (4b)
for ~1< p<vVi—a?/r?,

Integrating equation (4a) and (4b) over the intervals (V1 -a2/#2,1) and (- 1,V1 —a?/#?) and adding, we find that

vp(¥) is given by the equation

b
Vp(r)=%J‘ y[Cp(y)+Q(y)]dyf d—:[eXp(—|7-y|/V)—eXp —%(W’—a“rvy’—az)]

1
[

+¥ fl Pla, V1 =31 — u2)/a?) expl- pv + Va? - #3(1 - u?) |du
Vo 2

1= ®/r
+f 12 /72

1

46, T =731 = 5575%) exp{ Lur + V5 — 731 = 59} de. (5)

Equation (5} is in fact the integral form of transport equation

o= [ Lo+ ) FHIET ar [ as [ ar, 200(2-
Vi s

where V(r) is the volume of the spherical shell, a <~

< b which is not shielded by the surface y=a from r.
The surface S consists of the inner surface r=qa and

the outer surface »="5. The integration in the first term
of (6) can be extended to the volume V of the shell (or
even the sphere » < b) if the region » <« is assumed to
be a black medium. Thus the usual transport problem
(1) with prescribed incoming distributions implies the
existence of a black medium in the region interior to the
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r-rs \ 8-ny(rs)exp(~ir-nsl) o9 (6)
fr—rgl lr ~rgl?

I

surface ¥ =a. Further we note that the incoming distri-
butions are not always specified a priori but may be
given by the boundary conditions at the interface of two
media. In that case they serve to relate the unknown co-
efficients (introduced later) in the two adjoining media.
However in what follows we shall regard these incoming
distributions as known.

Using the formula®s
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14 /
exp(~Vr2—a? v):] exp(—r/u’)%(uzo(u'-v)+

[

Eq. (5) can be written as

al,@@aV1/p" - 17v“2)) -

14

Yi/u'2 _1/v2

1 b
yor)= %f dVI ylcp(y)+ Q(y)]dy[yl exp(~ |7 ~y|/v) - exp(- Y/V)K(V,y)]

1
+7 f Yla, V1 - v3(1 - p?)/a*) exp( - ur + Va? - 7%(1 - u?)]du
12772
V1a®/72
+ T
f (P(b, e 72(1 - U‘z)/bz) exp{_ [“7+ vb? _.1/'2(1 - “'2)] d“, (8)
I
1 ’
where g2 f oo, yryRlap @A)
K(v, ) : ji d‘“( 25 ( ] a L(aVl/ V'z—l?“'2)> ' ety
= — |V - +
» Y ¥ ) 'u; V- U IL' w/ITV'z:17IJZ (10)
X exp(~ VoZ — ¥/ ). (9)  Again using the formula'®
We now consider the last two terms in rhs of (8) and exp[- V7l = @1 - 1 9]
; . . . p 2
cast them in a suitable form so as to define the density N (P
transforms. The second term can be written as 4 —11 -k
1 _ _ & g ,)QK
4 frﬁ Pla, VI =721 = p2)/a?) _fo expl 7/1/)10(1/ 1=wvl-uior, an
1~a2 /72
x expl{- [ur - Ve =721 = u9)|}du it can be written as
J
1
7 f Yla, VT =721 = p2/a®) exp{~ 7 + Va2 =721 - p2)|dy
1=a2 /72 {
1
= I exp(- r/v)% I a*yla, p') eXP(au’)x’o(% IT-241- u'2)#’ du’. (12)
0 0
|
Now we write the last term on rhs of (9) as ><10(é V1= 121~ u'2> pidu’. (16)
14

v [T b, - T 7))
xexpl~ [ur + V02 =721 = D) ]}=9,- 9,

where ¢, gives the total flux in a purely capturing,
source-~free solid sphere of radius b due to an incident
angular flux ¥(b, - 1), p<(0,1). Thus

91:yf_i P, = VT =721~ p12)/b?)

(13)

xexp{- Ny m 14)
and
Gy=r }gmzp(b, ~VI= (1= p?)/b?)
xexp{- [ur+ VBT =721 - pd)]}du. (15)

On using the transformations used in obtaining Eq. (12),
we get

1 1
ﬂ2=f exp(-7/) % f BAp(b, ~ ") exp(~ bu’)
Q e

1=a® /»

In order to write ¢, in a convenient form let us assume
that the angular flux (b, - 1), p< (0,1) is due to an
isotropic, spherically symmetric source density y ()
in the region » = b, This source density can always be
chosen for a given ¢(b, ~ ) and if (b, — ) is a poly-
nomial of u of degree n then y () will also be a poly-
nomial of degree n.

Thus if

1 [
Vp(r)% J dVI ylep(v) +Q(v)]dy E exp(~ |7 ~z|/v) - exp(- V/V)K(v,y)]
0 a

1 1
+at f exp(~7f/V)%f u’w(a,u')eXp(au')I(](%ﬂ-VWI-u’2>du’
0 0
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§0, = w) = [, exp(~ RIX(/RZ+ B + 2bRA) dR, amn
then we have (Appendix A)
. -
d
gy = j -f[exp(?’/l/)—exp(— r/u)]f x (!
0 b
X exp(-7'/v)dv'. (18)
Hence Eq. (8) gives
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{
+bE flexp(—r/v)d—l:; f
[ LT

1-a2 /B2

p(b, 1"’ expl— bu’)fo(;’j I=RI= u’2>du'

; -
* f éyz[exp(r/ V) - exp(-7/1)] f x "7 exp(= 7'/ v)dr’. (19)
0 [

3. DENSITY TRANSFORMS

We are now in a position to define the density transforms ¢ (7, 1) that are solutions of plane geometry transport

equation. We have
6

1

Br, u)exp(r/p) = 5= f yexp(y/wcp(y)+Q(y)ldy - -1‘; f X' )r exp(-v'/u)dv’
e b

2u

2

f
v,

1-a2 /52

Wb, u' )’ expl=bp’)

for pe (0,1) and

b
o(r, p)exp(r/p)=- 51; f ylep() +Q(v)]exp(y/pn)dy

- % fwx(r’)r’ exp(»'/)dv’ (21)
b

for pe (- 1,0). Then from Eq. (19) we have
p(r)= [ o0, w)dy. (22)

Further, from Egs. (20}, (21), and (22) it is clear that
¢(r, 1) satisfies the plane geometry transport equation,
namely

! vQ(r)
, ,u)d . 23
“ar*‘b( W)= L(P(V uydu + > (23)

The normal mode solutions of the homogeneous part of
Eq. (23) are well known, It has been shown by Case!
that the normal modes

0,7, ) =exp(-7/v)&, (1) (24)
where
(1) =P2—(j—”_—u—) @) - 1) (24")

for ve (= 1,1) and x(v) given by
AMy)=1-cvtanhty

and the discrete mode

exp(— 7/ vy) @0 (1)
2N0+

bp.1.r, 1) = ’Q( 7"y exp(¥’/v,) d

+ J, exp(=7/v)dv (1) T/v)q)v(“) dvf Q') exp(r’/v) dr
1] a

2N,

where

i
NO*: j “‘I’Og(u)dﬂ iCl/(](V%C 1 %)
(U

-1

& 1
—lf E(u,»)ylen(9) +Q(y))dy +a° f Ya, p")u’ explap’), %\/l—uz VI-u? dp’
a 0

%\/*“1 VIS du (20)

{
G, 1) = exp(F 7/ vy)®,, (1) = exp(F r/vo)——fl———z(cx/; m (24”)

where v, satisfies the equation

¥ 10 vy +1

2 1}0—1::l

have partial range and full range completeness prop-
erties. They also satisfy half and full range orthogonal-
ity relations,

The general solution of Eq. (23) can be obtained by
expanding the transform ¢ (7, i) in terms of &,(u) over
the full range. This general solution will contain a
particular integral and a complementary function which
is the solution of homogeneous part of Eq. (23). The
particular integral can be obtained by using the Fourier
transform method. !3 Thus

and N, is the normalization integral for the singular eigenfunctions ®,(u), i.e.,

1
S pe(We(u)du=N8(v-v"),  N=v X))+
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vt

Q ) exp(iky) dk
bralr b 27J 2(1+ik) AR 25)
where
A1~ € [ —du (25")
2 ), 1+ikp
and
Q) = [~ rQ(r) exp(~ikr) . (25"
We assume that @(») vanishes for » ¢ (a, b). For
rc(a, b) Eqs. (25) and (25’) give
b
- /i) f Q) exp(~ 7'/ v) dv”
b
-, Ry [0 exptr /a9
-l T
(27a)
(27b)
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The general solution of Eq. (23) therefore can be written as

r b
o, u) :[am + 2_1]\? ( f ' Qr’) eXp(y’/Vg) dr’ ~ J ¥'Q(r’) exp(~ '/Vo)dy)] exp(- V/Vo)q’o»,(u)

a

b
+ (ao- - 2170 f ¥'Qr’) exp(— T’/Vo)d7'> exp(7/vy)@. (1)

i r b
+ I exp(—af/v)@,(u)du[A(vH 21N (J r'QUr’) exp(+7'/v)dr' - f T'Q(’V’)GXP(—’}"/V)dT')}
0 v a a

0 s
+ J exp(—v/u)(bv(u)dvéﬁl(u)— 2}\/ 7'Q(r’)exp(7”/u)d1”>. (28)

1

Integrating Eq. (28) we get a representation for the total neutron flux

1 b
1
vp(r) =a,, exp(—v/vy) + ay. exp(r/vy) + j A{vyexp(~7/v)dv+ T J’V’Q(?") dv'[exp(~ [r=7"|/vy - exp(~ (r +7")/vy)]
-1
The unknown coefficients a,,; A(v) can be determined from the following boundary conditions for ¢{», u) which can

be inferred from the definition of density transforms:

(1) “6(—'1,0)

¢>(b,u):—9ﬂib/—“)f ) exp(r'/ 1) d (30a)
b

dV er(af dr'[exp(= |7v =7"|/v) = exp(= (r +7")/V)]. (29)

(ii) u «(0,1)

qﬁ(a,u)eXp(fl/u):—lu f X0 exp(=v'/p)ar’ -
b

[ R

b
I yep(¥)+ QMK (i, ) dy

2 1
+ %5 f Yla, p)u' exp(+ au’)lo(% VI = p2vl - u’z)du’
0

2 (1
b
- b_z f P(b, - 1’ exp(- bu')%(— V1 - 2Vl - u’z) du’. (30b)
K 122 /b2 H
These boundary conditions determine the singular integral equations for the determination of the coefficients a,,

and A(v), ve (-1,1). These same equations can also be derived by substituting the form (29) directly in the Eq.
(19). They are

to, ’ 1 b
c j VA(V )eva il(:/V —l/V) 1, £ 5 I A(V')dV' j K(V,y) exp(—y/v')dy

1 a

AP)A®W) +

oo |

( TJ Q') exp(— 1’/1/0 d’r>exp a(l/vy - 1/v)] &,,v)
2N,

<a +— ’V J’ 7'Q(r’) exp(— 7*'/V0)d'r’> expla(l/v, +1/v)]&,_(v)
4 0* a

+f ;IAV] fbr’Q(V')exp (= #'/v")dv{explal/v-1/v")] &,.(v) — expla(l/v+1/v")]8_.(v)}
|t v [

2 1 oo
%f Ya, u')exp(au')u'zo(%ﬂ—v2¢1—‘u'2>du'—1yJ X'y exp(= 7'/ v) dr”
0 b

2
bz Pb, - u') exp(- bu')u”t)(% Vi—2Vi= u'z) dy’
R
b
_% j K(V,y)dy(C[ao+ exp(- y/l/o)+ao- exp(y/vo)]+ ———ZICV j r'Q(r") d’r'{exp |y ! l/VO)—eXp[ y+,,r)/yo]}
0+

a

1 ' b
+yQ(v) + J' ;(11\,1/ j 7'Qur") dr'{exp(- |y - 7'|/v') - exp[~ (¥ +V')/V']}> (31)
0 v,
for v&(0,1) and in the range v (- 1,0)
c [*va (’)exp 1/1/—-1/V)
A W) + 3 -[1

vi—-v

b
- <a0+ + %m ] ¥'Q@") sinh(r’/vy) dv’ )exp b(1/v,—1/v)]®,,(v) ~ ay. exp[b(1/v+ 1/v) 1@, (v)
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o 1 , b
~ —11; J "’ exp(v’/vydr' ~ f %V— exp(- b(1/v' - 1/v)1®,(v) f ¥ Q(r') sinh(¥’/v’) dv’.
b o ¢

Solution of singular integral equations {31) and (32)
gives the expansion coefficients of the density trans-
form. We notice that the kernels of these singular in-
tegral equations contain complicated function like
K{v,y). Same function was encountered in the treatment
of black sphere problem. 1~ 1t is known!® that for
actual numerical solution of these equations only first
two or three terms need be retained in the series ex-
pansion of the Bessel function ;(x) occurring in the ex-
pression for K(v,y). This greatly simplifies the equa-
tions and also yields excellent numerical results. The
free terms, i.e., the rhs of Egs. (31) and (32) contain
two arbitrary constants a,, and g,_ which are the coef-
ficients of the discrete modes. The solutions of Egs.

(32)

f

(31) and (32) do not exist for all values of these con-
stants but only for one definite value for them. Thus
Egs. {31) and (32) determine all the expansion coeffi-
cients a;, and A(v) e (- 1,1).

In two special cases of interior (when a=0) and ex-
terior (when b — =) problems these equations can be re-
duced to only one equation over the interval (0,1). Thus
for interior problem we have

K(V,y)=% exp(-y/v),
¢(0, - IJ-) == ¢(09 “') =0y, = — a,., A(" V):—A(U),
Both Egs. (31) and (32) give for v< (0,1)

s

Vi—-v

1
AA (V) exp(b/v) + Pé j VA (V) exp(b/u')(
0

vi+v

1 exp(= 2b/v')\)dv,

b v o
= (ag, + ; J' 'Q(r’) sinh(»'/vy) dr’) exp(= b/vy)@,_(v) - a5, exp(b/vy) &, - e_xpiL/u_) f ¥’y (') exp(—v'/v) dr’
0+ Jp b

1 ’ 14
+ f exp(— b/v')@_u,(v)%:j— f »'Q’) sinh(#’/v') dr’,
0 vt Jo

@33)

For exterior problems, since the total flux p(r) should approach the form given by diffusion theory for » > a, we

have
a;,.=0, Al¥)=0v¥vec(~-1,0)

and for ve (0,1) the function A(y) is the solution of the equation

N exp[- a(1/v’ - 1/v)] dv+ &
v -v

A, () + f

0

1 o
2 f A>(V’)dv'f K(v,y)exp(-y/v') dy
] a

9 1
-~ &, expl-a(1/v,~ 1/9)]e0. () + 5 f w'dla, ) exp(au')lo(?,fl e )du’
0

+ g{%\?ﬁ@ f 7'Q(r’) exp(~ ¥'/vy) dr'[exp(~ a/vy) @y, (V) - expla/vy)d,_(v)]

v

2N,

1
+exp (@/v) J’
0

o

[exp(— a/v")@,(v) ~ expla/v")®_.(v)] I r'Qr’yexp(-v'/v)dr’

a

- % J K(v,v)dy (cao.exp(— y/vp) + 5%,; j 7' Q') driexp(~ |7 - y|/vy) — exp[- (" +3)/v, ]}

1 ©
dv’
+yQ(¥)+ f o f QU driexp(- |7 =y |/v") - expl~ 0 +3)/ v'}}>. 349

0 v Ja

4. GREEN'S |

R FUNCTION METHOD 1+9-v)G(r, Q; 1), )
In this section we consider the Green’s function ap-~ c
proach!® to the spherically symmetric neutron transport =4 Glr, @' vy, Q) dR + 5(r — 1,)5,(R - ). (386)

problems. In the notation of Ref. 13 the solution of one
speed Bolizmann equation with isotropic scattering,
i.e.,

W09, 9= & [ utr, mas+ oz,

= 50+ Q(r, Q) (35)

can be obtained by using the infinite medium Green func-
tion which is the solution of the equation
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The Green’s function can be obtained by using Fourier
transform; thus

Glr, ®; 1y, )
1 (expldk-(r-r)] c 1 1
83 1+ik-Q (6(9 B+ 4 Tk Q, A(k))
(87)
where A(k) has been defined in (25a). Thus
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Pr, ) =y, (r, Q) + Yylr, Q) + Y. (r, V) (38)
where
%(1‘, Q)= f a’ deI"Q(l", ﬂ')G(r’ Q; rl, QI) (39)
and
exp(ék-r)ydk
o (T, ) = 8113[9X1(ilkr12 2 n,(rs) (s, 2

(40)
Xexp(— ik- rg) dS,

U(r sz)___ exp(k-r)dk / 9" ny(rs)(rs, ')
) 87 ) AR)(1 +ik- ) an(1+ik- Q)

Xexp(— ik rg)dSdQY,

ny(rs) is the normal to the surface S at the point rg on

the surface, directed into the volume V in which the

transport problem is being solved. The volume V is

bounded by the surface S. For spherically symmetric

problems with isotropic sources we have

$lr, p)
2w ’

Wr, 0) - e, =210 pmy-pir)

and ¥(r, n) satisfies Eq. (1). Equations (38), (39), and

(40) give
c TR
ll)c(yy ].l) = g; 'I-w A(k) I(k,’l’, “')dky

= 1
1 5 exp (thrtp)o(krvi = u2vi= )
ol )= 12 f_mk dk 1+ ikl

X H{k, ) di, (a1)

s i smk
- = i 2 ’
d}q(’;/’ )= an .[w A(k) Q( ) [<k 7, lJ-)dT
where
U explikrty) 5 5
Ik, v, n)= WJU(kTvl—u v1-2)dt
. ;
1
Hik, )= [ | ndrs, n') exp(= k7 sin’) (42)
XJ(ky V1 ~ 291 — 2)dp’
1
N RIODY
T(k)‘ff 1+ikl

The functions T(2), A(k), and I(k,r, 1) are all sectional-
ly holomarphic in the complex % plane with the branch
cuts (—i%=,i) U (i,i=), By taking the contour of integra-
tion along the branch cut from (Z,i=), Case el al. have
given the following expressions for J{r, u) for interior
and exterior problems. ¢ equals +1 for exterior and -1
for interior problems.

1. Interior problems

Y, 1) =4,y ) + LA/ v)d(i/ vy, 7, 1)
[ T/ /v, v, m) v/ v (43)

where

; 2 cv
/v, 1) = Ef_1 (Pm + A(w)5(v - 1))
xexpl~ (/U LTI

( TiG/v) Tz(i/v))
T RN Y

Z/V)*

gr\ A
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icT1(i/wy)

L6/ vy) = - TN vy)

(44)
The function T,(%) is that part of T(k) which vanishes as
k — < in the upper half of complex & plane (Imk > 0). It
is related to the angular distribution (b, 1) of neutrons
on the surface » =75 = b of the solid sphere » < b by the
relation

1 P
Ty(k) == b f RO, 1)t D 0 @+ D5 kD)

-1

1
Pt dt
xf 1kt ? (45)

¢! (kb) being the Hankel functions of first kind. On in-
tegrating Eq. (43) we get the same representation for
p(r) as given by Eq. (29) [with a;.=~a,,; A(- v) =~ A(V)],
and

A==t g/, af=- 2T/, (46)

2. Exterior problem

For exterior problems (v, i) is given by the
expression

W, 1) =0, 1)+ T3/ v) Z(i/ v, 7, 1)
s LI T6/ 026/ v, v, ) dv/v (47)

where

ZG/v,7, 1) = E "(@n+ 1P ()
VP, (1) dt

G

-1

A(v)
+ 2TPH(V)>, {48)

e [(TG/v) T/ v)
L, (/v) = sﬂi,ja< “G/v) T A V))
801/ =~ S5

TR
Equation (48) also gives the representation for p(r)
which is identical to the one obtained for exterior prob-
lems [a@,.=A(- »)=0], and
Aw=-2n6/m, g~ 2ria/y).

The expansion coefficients aj, and A.(v) [a;, and
A, (v)] depend upon the surface flux $(b, 1) [¢(a, p) for
exterior problem]. On taking the limit as » ~b (v —a),
we get regular integral equations for the determination
of these coefficients. In order to derive the equations
with singular kernels Case ef al. introduce the reduc-

tion operator
1-u? i)
v oou)’

le(r-7)e (1)

st v’ dv'K(r - v’ u)<1+p.ai,
Ky -7, )= SRt TR - (T“— r')/ul

—o(' —r)e(- )l

Applying this operator for g <0 (u >0 for exterior
problem) on rhs of (38) gives the expressions involving
the expansion coefficients and planar eigen functions.
However, it is not easy to find the result of applying
this operator on lhs of (38)., Case ef al. have equated it
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to the result obtained by applying the operator to

W, WO - ) [Y(r, w)O(r - a)]. The resulting equations
are therefore incorrect. We can derive the correct
singular integral equations as follows:

1. Interior problem

R (49)
and
Let us extend the definition of A.(v) to the interval
(- 1,1) as given by the relation (50) and also define
af_=iTy(=1/v)/2nA (- i/ ). (49"

Now define the functions F (k) and ¢.(k) by the relation
22 v'A (V) exp(b/V'
F((k):?(f ) exp(b/v1)
L

1+ikyV'
N Vag.s ex.p(b/uo) N vyds. exp(-— b/Vo)) (51)
1+iky, 1 —iky,
and
Ty(k) .
it g0<(k) F (k) - exp(- ikb), (52)

Ak)
These functions have the following properties:

(i) Ty(k), A(R), F((k), and ¢(k) have branch cuts ex-
tending from (- i®, - i) U (i, 7). In the cut plane kT, (k) is
analytic everywhere while A(k) and kF (k) have simple
poles at il/l/o It can be seen from the definition (49)
and (49’) that the residue of ¢.(k) at either of these poles
vanishes. Thus ¢.(B) is analytic in the cut plane.

(ii) Along the branch cut (- i, —{) U ({,7=) we have
from Plemelj formulas and Eq. (50)

@"(i/v)=0.

Thus ¢.(k) is analytic in the entire complex plane.

@i/ v) -

(iii) if B~
AR) =1, Ty~ EREED) gy 1/

Hence ¢ (k) vanishes at infinity. Since ¢ (k) is analytic
in the entire complex plane it vanishes everywhere and
hence

F(R)A(R) =Ty (k) exp(- ikb) (53)
Thus using Plemelj formulae and the relation
F'N - FA =3[A + N )[F - Fl+ 5[ - N |[F*+ F),
{54)
We get
I
MV)A() exp(b/v) + 5 f AW exp/y)
-1 -
H1(z/u v) exp(b/v) cvo (gé,, exp(b/vy)
202 2 v— v,
a5 exp(= b/v)
* v+, : (55)

1t is shown in Appendix B that for v< (0, 1)
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b
A-v)=-A,(v)- l}]—vfﬂ Q') sinh(»'/v) dr’,

b
a5_=a, + Nl— f ¥'Q(') sinh(v'/vy) dv’, (56)
0+ & ¢
Biifen). 1 X expl= /)y
Substituting (56) in (55) we get Eq. (33).
2. Exterior problems
In this case
T(i/v) ’(i{v))
A = 2111/3 (A “G/vy T AT/
@, =iT(i/vy)/ v A G/ vy).
Let us define
1 Ti(E/v) _ TiG/v)
20-5() (R - 50
4n NN (57)

i Ty(xi/wy)

07y A (i vy)

Since A(k) is an even function of 2, while T(k) equals
(Ty(k) + Ty(- B)]/2, we get

A,(v)=B(¥)+B(-v),

@ =by. = by.. (58)
Again we define ¢, (k) by the relation
2i B(v')' expla/Vv') . ,
o (k) = f 1 +2ky' d
vbo. exp(a/m) | vobo- exp(-a/ V0)>
1+iky, 1 -iky,
Ty(R) ,
" AR exp(— ika), (59)

Following the same treatment as before we can show
that ¢, (k) vanishes everywhere and applying the
Plemelj formulas we get

B(v ’)exE @/ v 5

V-

1
MVB(») exp(a/v) + f

-1

_Hy (i/v,v) Clo (bys exp(a/uo) by exp(- (1/1’0)
Tt xp(a/v)+ 5 ( V-V v+ v )
(60)
or
A(V)A(V)+£f V'B(v)expla(1/v’ - 1/v)]
2) V-
. g[1 v'B(-v") expl- a(1/v' ~ 1/v)]
2J v -v
oy exp(—a/v) exp(+ a/v))
=-——1p -
2 [ 0+exp(a/u0)( V-, v+,
_ _ expla/v) _ exp(=a/v)
by- exp( a/V°)< V-, N
2e/v,), (61)
It is shown in Appendix C that for v < (0,1)
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1

B(v) = Z—N—f r'Q(r') exp(—v'/v)ar’,

L ©
bg, = _ZNG,L ¥ QY exp(—7'/vy) dv’, (62)
1

H/v,v) = azJ' L'¥a, p') explap”)

0

><10<%v1 -2Vl - u'2>du’
+§I ylep(v) +Q(v)]dy
XB exp(- y/V)—K(V,y)].

Using the relations (62) and (58) in Eq. (60) we get Eq.
(34) for aj, and A, (v);, v>0. Thus for both the interior
and exterior problems we obtain the same singular
integral equation that were derived by density trans-
form method in Sec. 3.

5. CONCLUDING REMARKS

We have treated above the spherically symmetric one
speed transport equation with isotropic scattering and
sources by the density transform method and the
Green’s function method. The expansion coefficients
introduced by both these methods are identical and they
are given as the solution of Cauchy type singular inte-
gral equations, much like the plane geometry problems,
Although the parallelism of the two methods has been
shown only for the interior and exterior problems it
holds good for the general transport problem in a
spherical shell. In general these singular integral equa-
tions are not amenable to analytic solutions and
numerical methods are necessary as was done for the
spherical Milne problem. ! However, some analytical
methods have already been indicated by Case et al. '*
for interior problems, though their results for Albedo
problem are in error.
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APPENDIX A

We give here the derivation of Eq.
the variable

=V1 =721 - pu?
in Eq, (14), we get

o ! Wb, — ')’ exp(- b’
49,=2b
1t /52 Vr2 — b2(1 - pn'2)

xcosh{v7Z - B2{1 - u"2)]dp’.

Now we put

(18). Changing to

)/ b*

bu' Vr? = b2(1 - '2) = V72 + b - 2br cosé
and get
T
b—7cosb
- be . b, - )
b1=7 R ¢< V72 + b2 = 2b¥ cosB
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sme(b 7 cosh) exp(—Vr? + b2 — 2br cosb
(V725 BT = 2br cosh)?

Substituting (17) in {Al) we get
2HR(b -7 cosb)

© 4 1/2
=rb? f dR f doy{{R? + b*
4 X * +\/1'2+b2 2bv cosé
y sind(b — 7 cosé) expl— [R+ V(Z T b* = vacoﬂ]}
(V77 + 52 = 2b7 cosb)?

We now change to the new coordinates (', o) defined by

)d()

(A1)

[(A2)

W27 = 2r7"cosa =R + V72 +b% - 2b¥ cos®b,
(A3)
R(r = bcosb)
7' cosa=b 6~ .
© cos V72 + b2 = 2br cosh

Then the argument of the function y is simply #’, while
the element of integration is given by

3R/ ov' 86/

— ?
dRA6=| e olae | A (A4)
Relation (A4) gives
b’ sin(b - 7 cos) _ 7" sina I da
(VT ¥ = 2b7 cosh) 72472 277" cosa
{A5)

and therefore

gy= f ' dv’
b

<

0

77’ gina exp(— V¥2 +#'2 - 2v¥’ cosa ) do
y24+ ¥’ - 2v¥’ cosa

Carrying out the integration over a we obtain Eq. (18).

APPENDIX B

We will prove the relations (56) of text. Let us consid-
er the third of these relations first. By definition

1
Hy(k, ) =eb? [ (b, p")dp’

X 3 (=i @n+ DP(OPADED (kD). (B1)
From the expansion of £\ (kb)
e (kb)Y =V /2RD HL) 5 (kb)
exp(ikb) (=9)" " (m+m)! (_1_)”‘
Y ,,,Eo T —my! \oks) - (B
We get
H,(/v, v) - vb exp(- b/1) f w'y(b, 1) du §(”/ 2b)
x 2 ()i + 1) P P (1P 0. (B
Since
15 reme DB P )P0
DD -1.2{D-2.83)--- (D=n.n+1)5(n' +v), (B4)
P d 12y
D:dp,(l—u )dur-
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We observe that H,(i/v,v), v> 0 depends only upon the
incoming angular distribution $(b, u’), p'e (-1,0). Now
the angular flux ¥,(#, ) in a purely capturing sphere of
radius b free from all internal sources is given by

By(7, 1) = ¥(b, = VT =721 = p%)/B%)

xexp{- [ur + VBT =771 = uD) ]}
if (b, — 1) is given by the Eq. (17), then
A ()
T = D1 - p"?)

(B5)
Further,

e f oy el L
b

(B6)

"Yr' exp(- 7'/v)dv’ exp(— ur)

and
1 o
wo(r,u)=f0 %fb x(”

xzo(gm m) (B7)

If we change the contour of integration (along the real
line) in the definition of (v, u) as given by equation
{41) of text, we get

1
Do, )= éj‘ H,i/v, V)% exp(~ m’)lc(%\/l “ V1 - u2).
9

(B8)

Comparing (B7) and (B8) we get (since they are true
for ~1<u<1, 0<s7<bh)

Hyi/v,v) __ 1f Ty expl= 7 ).
b

22 v (B9)

In order to derive the remaining equations of the set
{56) we add Eq. (55) for v and — v to obtain

1
AWA) +Acl= )]+ S f VAL exp(b/v) av( 2
0

exg(- b/v) , exp(b/v)

V+1/)

1 exp(b
+ %fo VA (- V') exp(~ b/v)dv' (eva( TIJ/V) ):),(_ VV))
i b -b b
_ H(zé:, V) Eé”_o Lexp(b/v, )[exvp(+(yv eXEO b/v ] (22 as_exp(= /v, )( . V/V) exli(_/:)> (B10)
where
HG/v, v) = 3[Hy(i/v, v) + Hy(= i/v, = )] = = B [4 u'9(b, ") exp(bu") [ (b/vVI = VI < i2]dp’ (B11)
From Eq. (4b) of the text and Eq. (B6) we have, for interior problems,
(775 e 7 l b T B2 — T
T bu') = 'y e}Ep[_ 2"b(1‘ 2 ’ ,f COSh[yz—b(l—u)]
ZI)( s M )exp( ] ) J’b ‘/——'—Fﬁ dr +6(u ) bmy{cp(y)+Q(y)]dy \/yjz = b2(1 = u'z)
(B12)

Substituting (B12) in (B11) we find that the contribution
from the first term vanishes, while the second term
gives

HGi/v,v)= - v [ ylca(3) + Q()]sinh(y/ 1) dy. (B13)

Using the expression for yp(y) as given by Eq. (29), the
integral of Eq. (B13) can be evaluated and hence we get
from (B10)

1
A(WAX (V) exp(- b/v) + < f

0
1
X(V'— vt

exp(- 2b/v)>
=a¥, exp(- b/V")(vo

V'AX(V) exp(~ b/v)dv

Visy

1, exp(- 2b/V)) (B14)

-V Vy+v
where
1 ]
A¥(W)=A (N +A(-v)+ }—V_f r'Q(") sinh('r'/u) dr’
v/ g

(B15)

and the constant af, given by

b
at, =a§_- a, - 13 f '@’y sinh(r’/v,) dv’. (B16)
0+ 0
The index of Eq. (B14) is unity and hence its adjoint
homogeneous equation has one nontrivial solution. The
solution of (B14) exists if and only if its rhs is orthogon-

2269 J. Math. Phys., Vol. 16, No. 11, November 1975

‘al to this adjoint function. This requirement can be met
only by letting af, vanish in which case A¥(v) also
vanishes and hence the relations quoted in (56).

APPENDIX C

For the exterior problem H,(i/v, v) is given by
; 2 1 [ ’ ’
Hy/v,v)=ea® [ p'dla, u')dp

x 2= iF(2n+ VP () Pv)eiGa/v).  (C1)

=0
This expression is same as the one given by (Bl) (a
replacing b). As shown in Appendix B, H,(i/v, v) de-
pends only upon ¥(a, u), p € (-1,0). Further, for ex-

terior problem we have from (4b), u >0,
e a © -Vy2 g -
s, - u)- XP2( u)f exp[- V)T = a*(1 - %)
a Vye —~ a2(1 - U2)

xy[cp(y)+Q(¥)]dy. (C2)
Using (C2), (B6), and (B9) we have for exterior
problems
Hy(i/v,v)= 51;[ ylep() + @(¥)]exp(-y/v)dy (C3)

Using the expansion (29) for vp(y) for evaluating the
integral in (C3) and substituting the result in Eq. (60)
of the text, we get
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1
A(V)BX(v) exp(a/u) + g j B*(v"yv' exp(a/u’)dy’
0

X( 1 _exp(—za/v')>

v~y v +v
:bg% exp(_ a/l/o) - exp(a/VO) (C4)
2 Vy+V Vo~V
where ve (0, 1)
B0 =B - 5 [ e en-r/mar (5)
v a
and
b¥ =b,, - —VL J ¥ Q') exp(— 7'/ vy) dv’. (C6)
Nos ),

Again since Eq. (C4) has only trivial solution B*(v) and
b¥ vanish and hence the first two relations of the set
(62), the function H(i/v, v) is given by the relation

H@i/v,v)= azf wila, u’) explap’)l
{(cm

Since the angular flux ¥(a, i), g e (0,1) is prescribed by
boundary conditions while $(a, — 1) is given by (C2), we
get

H(i/v, V):a2f p'id(a, n) explap’)l, ( VI-VT - 2>d

[\
at |~
-3 yep(x)+@(y)]ay

1
xf w exp[~ Vi? - af(1 - ")
0 \/372 - a2(1 - U 2)

IOG\/I VT - ;L’2>du'

(C8)

On using the Eq. (11) of the text and the formulal®

7/2
f Jy(z sind)J,(w cos8) sin**!@ cos* 10 de
0

i (VZE 7 0f
YT MQ%‘L) (C9)
(V22 + w2
The integral in the second term of (C8) can be evaluated.
The result is
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@/ == 1) d.

@
IL{=V1l -2Vl - '2)d !
V2 —ar(l - p %) "(V Y
1
L@/ -1/ dp’
- Vv i az/u’
fvexp( 3’ /“’) a\/m—’z)uq
14
Jlad1/ w1/ du’
- 2 —a’/i! -
f et R R

The second integral in rhs of (C10) can be evaluated in
closed form

Jlavl/u’2 ~1/12) du’
f exp(- V5T a5 1( u ) lliz
0

f1“' exp(— VyT- a1 - ?)
0

(C10)

a1/u2-1/0% 1
= [exp(~ V97 = a%/v) — exp(- ’L/V (C11)
Using (C10) and (C11) in (C8), we get the Eq. (62) of the

text,
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The Gel’fand states of certain representations of U(n)
and the decomposition of products of representations of
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The representations of U(n), as realized by Bargmann and Moshinsky on spaces of polynomials (*‘boson
calculus”), are the main subject of this paper. We consider them from a global point of view, pointing out
the connection with induced representations. To compute the detailed structure of the representations, we
find the reproducing kernels of the function spaces and the operators that connect them according to
Weyl's branching law. Using these results, we compute the boson polynomials of representations of U(3),
and arrange them in a generating function. We extend this generating function to the boson polynomials of
representations of U(n) of the form {(m, m,0--0))>. By considering these polynomials from a different
viewpoint, we are able to obtain an explicit decomposition of the Kronecker product of n— 1

representations of SU(2).

1. INTRODUCTION
A. Summary

The irreducible representation of the compact simple
Lie groups have been studied from many viewpoints. In
one sense, they might seem a “dead” subject, since
they were completely classified by the work of Cartan
and Weyl. But in a larger perspective, Cartan and Weyl
only began the study of these representations. A com-
plete understanding of one representation requires an
explicitly described space on which the group elements
act in a completely specified way. A more detailed
description would include a basis of the vector space,
and the matrix entries of the operators corresponding to
elements of the group. Such a level of detail is of
interest for applications of the theory, and is more and
more perceptibly required for developments within rep-
resentation theory itself.

For the case of SU(n), some of the details have been
filled in. Weyl', and Gel’fand and Zeitlin® pointed out
that the “branching law”® provides a natural inductive
method of choosing an orthonormal basis for any unitary
representation. See also Ref. 4. More recently, Baird,
Biedenharn, and others have made a very extensive
study of the Gel’fand bases and related structures
(see Refs. 5—7, and papers referred to there). A de-
scription of the representations on spaces of poly-
nomials was introduced by Bargmann and Moshinsgky®'?;
Moshinsky, Biedenharn, and their coworkers have made
some progress on the expression of the Gel’fand—
Zeitlin bases in this realization, usually called boson
polynomials, for SU(3) and SU(4) (see Refs. 4—17, 10—
14). The complexity of the results for SU(n) seems to
grow rapidly as » increases; the difficulty of finding the
results grows even faster.

Moshinsky, '* in 1963, made an observation of the
highest importance regarding the problem of outer
multiplicities. This problem arises when one takes the
Kronecker product of two (or more) representations of
SU(n) and decomposes it into irreducible subrepresenta-
tions. In general, some of the subrepresentations oc-
cur with multiplicities greater than 1; therefore, if one
wishes to express the decomposition explicitly, one
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must somehow select a sufficient number of inequivalent
irreducible subrepresentations. The search for efficient
means of selection has challenged the ingenuity of re-
searchers from Racah on down. Moshinsky observed
that the Kronecker product of k representations of SU(n)
could be analyzed in terms of certain representations

of SU(N), where N=*k(n-1). For another approach to
this problem, giving detailed results in SU(3) and a
partial extension to SU(n), see Refs. 16 and 17.

In the present paper, the author hopes to clarify some
of the theory of the representations of SU(n). The re-
producing kernels, of certain vector spaces and of
operators between them, provide a kind of explicit de-
scription of the spaces and operators. We compute these
kernels explicitly; on the one hand, we find that they
are related to the maximal and semimaximal states as
defined in Ref. 5, and on the other hand they can be
used to compute other states. We have successiully
carried out this computation for the states of certain
representations, including the representations
(m,m,0--+0) of U(n). This result is enough to provide
a decomposition of products of representations of SU(2).

Certain steps in the argument are not new, indeed
are familiar in various forms in the literature; I have
tried to give correct acknowledgments. (I am indebted
to the referee for several references. ) Some material
is repeated in order to fix notation and make this paper
relatively self-contained. As to the normalization con-
stants for the maximal and semimaximal states, it
seems (to the author, at least) that the proofs given here
are more conceptual than the lengthy computations
which are sometimes described very briefly in the
literature. This paper largely avoids the use of “in-
finitesimal elements, ” raising and lowering operators,
and the like, in favor of more “global” and integral
methods in the spirit of Bargmann’s elegant paper.'®

The organization of this paper is as follows. Sec. IB
describes the Fock spaces of analytic functions, in
which we shall work. The formalism of these spaces is
known by many names; notably, the “boson calculus, ”
Section IC is concerned with some notational conventions
we shall adopt for working in Fock spaces over spaces
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of matrices, and with the device which Weyl called the
“unitarian trick.”

Section II introduces the representation spaces,
following Bargmann and Moshinsky. In Sec. IIA we give
the definition. Section IIB points out how this construc-
tion is related to recent developments in pure mathe-
matics, known as the Borel—Weil theorem. This rela-
tionship has been very little noticed, and came as a
surprise to the author. Section IIC is largely devoted {o
a result, very similar to one proved by Moshinsky, on
the structure of any element of one of the representation
spaces. In Sec. IID we find the reproducing kernels of
these spaces.

Proceeding in the same style, we consider the
branching operators in Sec. IIl. In Sec. HIA we describe
the requirements which the kernel of such an operator
must satisfy. In Sec. IIIB we compute the kernel.

Section IV is concerned with the main problem of this
paper: the explicit expression of the boson polynomials.
In Sec. IVA, we analyze the branching kernel to find
the states for U(3); of course, we get the same answer
as everyone else. The same kind of analysis does not
easily extend to U(n) where n > 4. However, we notice
the existence of a simple generating function for the
U(3) states, as explained in Sec, IVB. It cries aloud to
be generalized, and in Sec. IVC we do generalize it to
certain representations of U(n).

In Sec. V we apply the preceding work to the study of
products of representations of SU(2). Section VA re-
states in somewhat greater detail what Moshinsky
pointed out in 1963.'® The product of n - 1 representa-
tions of SU(2) can be decomposed by finding invariant
vectors in products of » representations. These vectors
can be regarded as Gel’fand states of representations
of U(n). Only those representations are needed which
correspond to Young diagrams with two rows of equal
length; for these, the result of Sec. IVC is adequate.
The results, which are worked out in Sec. VC, include
a generalization of the generating function for the 3-j
coefficients, found in Ref. 18.

In conclusion, Sec. VI describes some problems
which await solution, and some of the author’s plans
and hopes regarding them.

B. Fock spaces

Let E be a finite-dimensional complex Hilbert space.
If n is the dimension of E and (z,,...,2,) is an ortho-
normal coordinate system, let y be the Gaussian mea-
sure on E defined by

dy=7"expl-(z,2)] T dRez, dimz,. (1.1)
k=1

Let@be the space of analytic functions f on E such that
(1 fi%dy <y then@is a Hilbert space with the inner
product

()= [ F(2)alz)dr(z).

The Hilbert space@ , which we shall call Fock space
over E, has been studied in detail by Bargmann'®; a use-
ful source is Ref. 18. For proofs of the results in this
section, see either of these references.

All polynomials on E belong to@; if we let z* stand
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for z,*1--- z""‘" and a! stand for a,! - a, !, then the
monomials (a!)*/2z2® make up an orthonormal basis of

If w< E, let us define the function e by
e, (z)=expl(w, 2)].

We are using the convention that inner products are com-
plex-linear in the right-hand factor. Then ewe®, and
for any f in @,

f(w) = (ew,f)-

This relation is sometimes expressed by saying that
the function K defined by

K(z,w)=e,(2)

is the reproducing kernel 0f®. Any closed linear sub-
space of has a reproducing kernel, i.e., a func-
tion Kg)such that, if we set

K@.u(2)=Kg (z,)

then

Kguw= G, fw)=Kg ., /) it /=©).
The reproducing kernel K@ is completely characterized
by (1.2).

(1.2)

Proposition 1.1: Let {f,;} be an orthornormal basis of
the closed linear subspace Then (a bar denotes com-
plex conjugation)

Kefz, w)= 2] f(2) fw), z,weM(E). (1.3)

If M is a bounded linear operator on@, then we can
define the reproducing kernel of M as follows:
M(z,w)=M(e )z)=(e,,Me ).
Let us note the following facts:
Proposition 1, 2: Iffr—:®, then
Mf(2)= [ M(z,w) f(w)dy@w).
Proposition 1. 3: The reproducing kernel of M* is
M*(z,w)=M(@w, 2)".

Proposition 1.4: If {f,} is an orthornormal basis of
, then

M(z, w) = 33 (Mf,)2) f,(w);

the elements of f; may be restricted to a basis of the
orthogonal complement of the null space of M.

Proposition 1. 5: If P is the orthogonal projection of
onto a closed subspace@, then

K, (z,w)="Plz,w).

Proposition 1,6: If S and T are bounded operators on
, and V=5ST, then

V(z,w)= [ 8(2,v) T(v, w) dy(v).

C. Fock space over a space of matrices

We shall apply the formalism of Sec. IB to the case
that E is the vector space M(n) of nX» square matrices,
with the inner product

(z,w)=Tr(z*w).
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If ze M(n), we shall denote the rows of z by z;.,...,2,.;
on occasion we shall consider the columns of z, and we

shall denote them by z.,,...,2. .

We shall need to refer to the determinants of sub-
matrices of z, For the most general case, we set

iy oee §
Aii J‘Z (z)=det(z, ; ), pu,....a"

(1.4)

Here we can assume #, <Z,<---<i and j;<j,<--<j,.
For the most part, we shall need (1. 4) only when i,
=1,...,i,=d; we set

By (@)= 8370, (2). (1. 5)

These polynomials are boson polynomials; every boson
polynomial can be represented in terms of them. Finally
we set

A(d;z)=a1010(2). (1.6)

The vector space M(n) contains GL(n,T) as a dense
open subset, and U(n) as a compact subset of GL(n, T).
It is important for us that certain equations can be ex-
tended from U(xn) to M(n). Weyl (Ref. 20, p. 265) uses
such an extension to show that a complete list of finite-
dimensional representations of SL(n, €) can be derived
from a complete list of representations of SU(n). We
shall use the following proposition several times.

Proposition 1.7: Let f and g be analytic functions on
GL(n, ). If f(u)=g(u) for all ¥ in U(n), then f(z)=g(z)
for all z in GL(n, €). 1f furthermore, fand g are analy-
tic on M(n), then f(z)=g(z) for all z in M(n).

Proof : Consider the analytic function ¢(s)=7f(exp(s))
- glexp(s)), where s e M(n). By hypothesis if s is skew-
Hermitian, so that exp(s)= U(n), then ¢(s)=0. Thus the
function ¢ vanishes on a set of matrices which is
characterized by the condition that certain linear com-
binations of the entries have real values. But analytic
continuation is possible, passing from those real values
to arbitrary complex values; that is, ¢(exp(s))=0 for
all s in M(n). Therefore, f(z)=g(z) for all z belonging
to some neighborhood of the identity, and the conclusion
follows immediately.

Il. THE REPRESENTATION SPACES OF BARGMANN
AND MOSHINSKY

A. Definitions

The Fock space@ lying over M(n) is invariant under
transformations of the base space which preserve inner
products, e.g., multiplication on the right by a member
of U(n). If u e U(n) and we define L, :@—-@by

(L,f)(2)= f(zu), (2.1)

then L is a unitary representation of U(n). Bargmann
and Moshinsky %:° have shown how to define subrep-
resentations of L which make up a complete list of ir-
reducible representations of SU(n). The method can be
traced back to Jordan®!; see also Schwinger’s notes in
Ref. 22. Their method is as follows. If 1 <j, k<n, let
T, . be the operator defined by

e
T, f(2)= héz/ Z i 9z,
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For nonnegative integers m,,...,m,, Iet"'" " (or,
for short, "‘) be the space of functions f in@
satisfying
r;,f=mf, 1<j=n, (2.2)
r,.f=0, 1<j<ksn. (2.3)

Equation (2. 2) implies that f is a polynomial, homo-
geneous of degree #; in the elements of the row z;..
Moshinsky® shows that"‘ is zero unless m, > m,

= ..-2m_, and if these inequalities are satisfied then
U(n) acts irreducibly on. We shall let L™ denote the
restriction of L to "’:

Lmf(2)= f(zu), F=(B)™

It is also shown in Ref. 9 that L™ is isomorphic to the
representation denoted (P(m,, ..., m,)) by Weyl (Ref,
20, p. 1301f.)

We get a complete list (up to equivalence) of unitary
representations of SU(r) by taking those L™ with m, =0,
As representations of Uln), L™ "™ and L™ - mah
differ only in a power of the determinant of the group
element. Thus by taking all n-tuples satisfying m,
=z--2m_ 20, we get a redundant list of representations
of SU(n), or a partial list of representations of U(n);
the others differ by powers of the determinant.

Let us consider the definition of’" in a slightly dif-
ferent way. Let @" be the subgroup of GL(n, ) con-
sisting of lower-triangular matrices with 1's on the
main diagonal:

M), ={g=CL(,@): g, =1, g,,=0 if 1 <j<k<nk
(2. 4)
Then (2. 3) is formally equivalent to the condition

flear=1(2), &-@. (2.5)
(As we are dealing with polynomials, we may put out of
our minds all scruples connected with the unboundedness
of I'; ,.) Similarly, if we let be the group of diagonal
matrices

6 =diag(5,,...,0,)= GL(n, C)

m

and write 5™ for 5,"1 -+ 5,

as

", then (2. 2) can be expressed

f(d2)=06"f(2). (2. 6)

Therefore "' is the space of holomorphic functions on
M(n) which transform in the following way under the left
action of the group ), of lower triangular matrices:

f(ogz)=0mf(2), ze Mn), 5=D), gc@), (2.7

This description of the representation spaces is also
found in Refs. 23 and 24.

B. A digression on induced representations

The reader who is acquainted with the representation
theory of the noncompact simple Lie groups (e.g., Ref.
23 or Sec. 9 of Ref. 25) may recognize that the de-
finition of L™ is very strongly analogous to the con-
struction of the principal series of representations of
GL(n, ) as induced representations. Let us recall that
construction. First, one considers a homomorphism p
of the Abelian group@ into €*; p defines a homomor-
phism p of the solvable group@:@”® into €*, by
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setting E(()g):p(é) if 6 e@ﬂ and ge@". One then con-
siders functions f defined on GL(n, €) such that

f(p2)=p(p)f(2), zeGL(n,€), p=(P) (2.8)

Then GL(n, €) acts on the space of such functions by
right translation. If p satisfies {p(6){ =1, then an inner
product can be defined on the set of f satisfying (2. 8) so
that the functions of finite norm constitute a Hilbert
space, and the representation of GL(n, €) on this Hilbert
space is unitary. It is the representation induced by p.

The most important differences between this con-~
struction and that of Moshinsky %' are (a) the homomor-
phism p is not unitary but is analytic on the complex
Lie group , and (b) the functions which make up the
representation space not only satisfy (2. 8) but also are
holomorphic on GL{n, €). (It may clarify matters to note
that Moshinsky does not mention p explicitly, but the
equations (4, 3a-b) of Ref. 9 are equivalent to our (2. 2)—
(2.3).) The representation on ”‘ can be defined for
GL(n,T), but only on the compact subgroup U(n) can it
be unitary. The construction of L™ is sometimes known
as holomorphic induction.

The theorem that every irreducible representation
of a compact Lie group can be realized by holomorphic
induction from a one-dimensional representation of a
group such as is a particular case of what is known
as the Borel—-Weil theorem. It was first suggested (so
far as I know) by Godement®® in 1952, and was developed
further for the classical groups by Zhelobenko®* in 1962,
The formulation of Borel and Weil?", and its generaliza-
tion by Bott?®, use highly sophisticated mathematical
concepts. A general algebraic form of the theorem is
found in Ref. 29; the book, ** especially chapter 6, con-
tains a detailed exposition. A book by the present author
to be published by Marcel Dekker, contains an introduc~
tory exposition. It seems curious that on the one hand,
Bargmann and Moshinsky make no explicit reference to
induced representations, while on the other hand it is
not apparent from the statement of the Borel—Weil
theorem that the spaces which it describes can be made
explicit in a way suitable for computation.

When this paper was essentially finished, the author
saw Ref. 31, which also remarks the identity of
Zhelobenko’s construction with that of Bargmann and
Moshinsky.

C. The structure of a function in ®’"

Let us consider the spaceof all elements of@
satisfying (2. 5). This is the orthogonal direct sum of
the spaces @’”. The polynomial members ofform a
dense subspace O of ; in fact o is the set of finite
linear combinations of members of the spaces "‘.

Theorem 2.1 Every member f of o can be expressed
as a polynomial function of the determinants 4; ... ,-,r(z)
as defined in (1. 5).

Proof: Let us regard the matrix z as organized into
its n columns z.,,...,Z.,. An element ofo can be
considered as a polynomial in these n vector arguments,
invariant under the action upon them of the group .
The theorem claims that the determinants A,-lo..,jd(z)
are (in the terminology of Ref. 20) a basic set of in-
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variants, i.e., they generate the ring of polynomial in~
variants 0. Now Ajl,“,.,jd(z) can be obtained from
A(d; 2)=A4,.., (7) by simply substituting z., for z, in
the latter determinant; thus (Ref. 20, p. 44) we want to
prove that A(1;z),...,A{(n;z) make up a complete list
of “typical basic invariants. ” We shall do this by an
induction argument. To reduce the case for n-rowed
vectors to that for (n ~ 1)-rowed vectors, we use the
following lemma.

Lemma 2.1: Let fe and let f(z) be independent of
z,,.. Then f(z) is independent of z,..

2

Proof: We may consider f restricted to the subspace
on which z, =0, Suppose first that A(n~1;2)#0, which
implies that the rows z,.,...,2, ;. are linearly inde~
pendent. Then they span the space of all 1Xn row vec-
tors with the last entry equal to 0, so we can write

n. J

Thus, if z belongs to an open dense subset of the
matrices with vanishing #th column, then f(z) is inde-
pendent of the nth row of z. By continuity the same
thing is true for all such matrices. This proves the
lemma.

We now prove by induction that A(1,2),...,4A(r;z
are a complete list of typical basic invariants for@,. If
n=1, the statement is vacuous. Suppose that it is true
for n—1, i.e., that a(1,2),...,A(n-1;2) are a com-
plete list of typical basic invariant functions of column
vectors of dimension n - 1, under the group(N) _,.

Consider a polynomial f, depending on n~1 column

vectors z.,,...,2.,, of dimension n, and invariant under
. Such an f can be regarded as an invariant function

of z,5, ..., Z,, that just happens to be independent of z. .
By the lemma, f is also independent of z., that is f
does not depend on the last element of each column
Z.yy e ey Za,y. Thus f can be regarded as a function de-
fined on M(n — 1), invariant under the group N __,. By the
induction hypothesis, f can be expressed in terms of
A(1:2),..., A(n—1;z) and the results of column sub-
stitutions.

We have just shown that A(1;2),..., A(n—-1;z)are
a complete list of typical basic invariants for n -1
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column vectors. By theorem (2. 5A) on page 44 of Ref.
20, such a list, augmented by the inclusion of A(n; z2),
is a complete list for any number of column vectors.
This completes the induction step, and finishes the
proof of the theorem.

For another proof, see (Ref. 32, p. 219). See alsc
Refs. 11 and 33. Moshinsky Ref. 9 proves a theorem
which is similar to Theorem 2.1, starting from (2. 3).
His conclusion is that f may be expressed as a rational
function of certain determinants of the form (1. 5).
Moshinsky’s result is more economical in that the in-
variant is expressed in terms of a smaller number of
arguments; but it has the disadvantage that there is
some requirement on the rational function of the A’s
which must be solved if the invariant, as a function of
the z,,, is to be a polynomial.

For later reference we note this result. (For con-
venience we set m,,; =0.)

Proposz‘tion 2. 2:"'1 " is nonzero if and only if
zmy> - 2m, >0, If that is the case, then

f (—"‘1 » if and only if

f(Z):P(Al(Z), ces B 1o jd(z)’ s A]_ oee n(Z))
where P is a polynomial which, for eachd=1,2,...,n,
is homogeneous of degree m - m,,, in the arguments
A, ..., (2).

7y d

Proof: We know that 7, being a member of 0, is
expressible as a polynomial in the 4, ... ; (2z). We have,
¢
because f (‘”‘ if 6 =diag(6,,..., 6

f(82)=5,"1 - 8 ™ f(2)
= 51"‘1‘"‘2(5152)"’2"“3 e (B e

n

6" fla).
(2.9)
But

Ajl P jd(éz):(él "54) Ajlqeej (Z).

d

So if f is to have the homogeneity indicated by (2. 9),
P must be homogeneous of degree m, —m, in the argu-
ments 4,(z), and so on.

D. The reproducing kernel of '"

In this section, we shall compute the function K™(z,w)
which is the reproducing kernel of the space . We
know that K™(z,w) is an analytic function of z, and be-
cause K™(z,w)=K™w, 2)" (see Proposition 1. 3), K™ is
analytic as a function of w; or, K™(2,w) is analytic as
a function of w*.

Proposition 2. 3: K™(z,w) can be expressed as a func-
tion of zw*; in fact,

K™z, w)=K"(zw*,I).

Proof: K™ is the kernel of the projection operator P™
whose image is’" {see Proposition 1. 5), so

K™(z,w)=(e, P"e,).
Now P™ commutes with L, if u= U(n), so

(ee, P’"Lu ew):(ez; Lquew): (Lu* e:’PMew)' (2‘ 10)

We have e (x)=exp(w, x) = exp[Tr{w*)]; therefore,
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L e (x)=e,(xu) = exp[Tr(w*xu)]= exp[ Tr(uw*x)]
=e,,«x).
Thus (2. 10) says
(e, Pme,»+)=(e,, PTe),
or
K™z, wu*)=K™(zu, w). (2.11)

Now both sides of this equation depend analytically on
the matrix elements of ¥, and may be expressed as
polynomials, Therefore by Proposition 1.7, the equa-
tion is valid for all u in M(n). If we set w =1, then we
have K™(z, u*)=K™zu, ), which is what we wanted to
prove with u* in place of w.

We can now concentrate our attention on the function
K™(z,I). It is completely determined by the fact that
it belongs to "‘ and the inner product relation

K™z, 1), f(2)=fW), fc@)™

By Theorem 2.1 and Proposition 2. 2 we can represent
K™(z,I) as a linear combination of monomials in the
determinants 4, ..., (z), withj <. <j,; the monomials
are to be homogenegus of degree e, in the A’s with
exactly 4 subscripts, where

(2.12)

e, =my~m,,, d<sn-1, e, =m,_ (2.13)

Among these monomials we distinguish one in particu-

lar: for brevity, we set
A%(z)=A(1;2) A(2;2) - Aln; 2)°n,

The set of all other monomials with the given homo-
geneity will be denoted by S.

Proposition 2.4: If M =S, then M({I)=0. On the other
hand, A®(I)=1.

Proof: We verify that A(d;I)=1, whereas if (j,, .. o2y

#(1,...,d), then 4, i\ (I)=0. Therefore, a product
Wthh 1nc1udes any such dfactors By .. (z) must vanish
when z=1, ?

Pyoposition 2. 5: If M = S then M is orthogonal to A,

Proof: Every monomial in the A’s is an eigenvector
of the action of L™ restricted to the diagonal unitary
matrices. This follows because, if § =diag(5,,..., 6,),

(LﬁAjl 'jd)(z):Ajl jd(26):6j1“° ..jd(z)-

So, for each monomial M, there is a multi-index w(M)
=(u,(M), ..., 1(M)) such that [with the notation of 2. 6]

LM=6440, 52(D).

In particular, p(a¢)={(m,,m,,... ,m,). We place a
partial order on such multi-indices, as follows: let u’
:(u'l, .., 4/) and p”:(p”l, .., ”); then w/>pu” if
S T R A N j»1 for some j. Then
itMeS, we have ulas) > u(M) for Bla... 0> u(s,
unless (1,...,d)=(j;,...,j,), and both the mult1 -in-
dices and the1r ordering are additive. But u(M)# u(Aae)
implies that M and A¢ are orthogonal. This completes
the proof.

do Ajl .

)

Tt

Of course the analysis of a representation space into
eigenspaces of the subgroup is the classical theory
of weight spaces of representations of semisimple Lie
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groups. In the terminology of that theory, we have
shown that A¢ is a generator of the maximal weight
space (cf. Refs. 9 and 34).

Pyoposition 2. 8: With the notation of (2. 13), we have
K™z, I) = A%(|-2 A%(z). (2.14)

Proof: The right-hand side of this equation belongs to
(B),; we must show that it makes (2.12) true. Let f be
any element of”‘; by Proposition 2.2 we can express

fas
f=alf+ f,

where f, is a combination of monomials in the A’s other
than 4°, but belonging to(B)". By Proposition 2.4, f(/)
= «. By Proposition 2.5,

(4%, fl= a2 q + (4% f,)=lla%|Pa.
Therefore we have

f)=a=lla%l" (4% f). QED

We must now furn our attention to calculating ||Ae|2,
We shall express it in terms of an integral over U(n).
Such integrals are notoriously difficult to evaluate; but
we shall be able to sidestep the task, by reducing the
integrand to another one of simpler form.

The key to the reduction to U(n) is the fact that when
we are finding the norm of a function f in, it is
possible to reduce the integration over M(n) to integra-
tion over a submanifold, namely the set of all z such
that the row vectors z,.,..
We do this reduction by integrating first with respect to
2 ., then with respect to z__,., and so on back to z;,. We
may assume that z,,,..., z,, are linearly independent;
by doing so we are merely excluding a set of measure
Zero.

Consider the stage in the process at which we have
integrated with respect to 2,,,.,...,2,. Because of the
@ ,-invariance of the function f with which we started,
our integrand, a function of z,.,...,2,., is unchanged
by the addition to z,, of any linear combination of
Z3.y+.-52,1.. S0 as a function of z,, it is constant along
the subspaces parallel to the linear subspace generated
by 2,.,...,2;.,.. Now the measure with respect to which
we are integrating is the Gaussian measure; it can be
regarded as the product of the Gaussian measures on
that (j - 1)~dimensional subspace and its orthogonal
complement. When we integrate over a translate of the
former subspace, because the integrand is constant and
the total measure is 1, we simply get the value of the
integrand at one point. So we might as well not bother,
and just integrate over the latter subspace, that is, the
vectors orthogonal to z,.,...,2;,..

When we have, in this manner, reduced the integra-
tion over z,., for each j running from = back to 1, we
have a result which can be expressed as follows. Let
F, be the space of all n-dimensional row vectors; given
z,, in F,, let F, be the space of all vectors in F, orthog-
onal to z,.; given z,, in F,, let F, be the set of all vec-
tors in F, orthogonal to z,.; and so on. Then if fe,

./;“") | f(2)|% dr(z,.) - dr(z.)
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., 2, are pairwise orthogonal,

— fFl sz jl;',, ‘f(z)‘P d’)’p,,(zn-) d)/Fz(zz,)d‘yFl(zl,).
(2.195)

When we apply (2. 15) to a function f in, we can
make a further reduction by carrying out the integration
over F, in two steps. To do this, we set 2, =p,u,;, where
p; 20 and u,, is a vector of unit length, and let do, de-
note a uniform measure on the unit sphere S, in the
(n-j+ 1)-dimensional space F;; we normalize do; so
that the total measure of the sphere is 1/(n-j)!. Then

d}'Fj(zj.) =2p 272 exp(= p;)® do(u;)dp,. (2.16)

Now the vectors u,.,...,u,, are pairwise orthogonal and
of length 1; therefore they are the rows of a unitary
matrix #. The measure do defined by

Jwwaoty= [ [ [ g dow,)  doyu,.)doy(uy.)
1 2 n

is a Haar measure on U(n) (Ref. 34). We may arrange
(2. 15), with the help of {2. 16), in this way:

Jrew 1 £ dv(2)

= f:...j: fm") | f (diag(ps, .« -, 0 )0} |? do()

X T (20,27 exp(— g2 dp,). (2.17)
=1

Now ifff—:”‘, then f(diag(p,,...,p ) =p,"" - p " f(u),

and in (2. 17) we can carry out the integration over

Pys+--sP,, tofind

fM(n) | F() 2 dy(2) = fmn)\f(uﬂzdc(u) j}fll (m; +n~j)

(2.18)
Let us apply (2.18) if f=4°, where e=(e,...,¢ ) is

related to (m,, ..., mﬂ) by (2.13). We set

Almy,om)= [ jax2)|* dr(2),
Bley - e)= fy,, |8%0)[* dote).
Equation {2. 18) tells us

Amy,...,m )=B(e,...,e) f[l (m;+n -1 (2.19)
=

We can carry out an induction on »n by making two
observations. First, if m =0 then A%(z) is independent
of z ,, so that

Ay, ou.,m,, 0)=Alm,, ..., m,,). (2.20)
Second, if uc U(n) then |A{n;u)| =1; therefore
Bley,...,e,)=B(ey,...,e,,,0). (2.21)
But we can apply (2. 19) with ¢, changed to 0:
Almy=m,, ...,my,—m,0)
:B(el;---aen-uo) "ﬁ’ (mj—mn+n—j)! (2422)
i=1
From (2.19) and (2. 20), we find
Amy-m,,...,m_,-m_0)
=A(my=m ,...,m —m)
n=1
=Ble,,...,e,.,) nl (m,-m +n-1-j)!
=
(2.23)
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We can combine (2. 21), (2.22), and (2. 23) to find
nel \a
B(ey,...,e)=B(ey,...,e,.,) j{ll (m,=m,+n-j4)". (2.24)

Now B(e,)=1, so from (2. 24) we find

Bley,...,e)= I (m;—-m,+k-j)y". (2. 25)
1€ jKp<En
Using (2. 19) we now conclude
A(ml."'-amn):(jl__ll (mj+n_j)!)
LS - R
(T 1 (mj—mk+k—])) . (2. 26)
J=1 k=j+1

We summarize the work of this section in the following
theorem.

Theorem 2.2: Let m=(my,...,m); let e,=m, -m,,,
ift<sjs<n-1, and e,=m,. Then(B)"={0} unless
my=m, = =2m,=0. If these inequalities are satisfied,
then the reproducing kernel of"‘ is

K™(z,w)=A(m)* A%(zw¥), (2.27)

where A¢ is defined before Proposition (2. 4) and A(m)
is given by (2. 26).

The identification of A?(z) as a maximal weight vector
is found in Moshinsky’s papers °!5, The normalization
factor A(m)!/? is given in Ref. 5; the proof indicated
there apparently is of a combinatorial nature. The
importance of the maximal and semimaximal vectors
to the representation spaces has been recognized since
the publication of Refs. 5,9, 15; their use as repro-
ducing kernels can be seen in Refs. 11 and 35.

i11i. THE BRANCHING OPERATORS
A. Global description

The branching operators arise from the embedding of
U(n=1) in U(n):

u ces u 0
e 11 1,n-1
Uy Uy na . .
U= — . . 0 .
* u

n-1,1 n-1,n-1

Up.1 Un1,n-1
0 0 1

(3.1)

We shall also denote the larger matrix by «. If the rep-
resentation L™ ™) of U(n) is restricted to U(n - 1),
then according to Weyl’s branching law (Ref, 3, p. 391)
it can be decomposed into a direct sum of distinet ir-
reducible representations: one equivalent to each L™
where m' =(mj,... ,m’"_l) is subject to

> 'z > =m' =
myzmiyzmyzocczm 2m,,

(3.2)

We define the branching operator R[, to be a map from
"" to "‘ which realizes this equivalence; that is, it
intertwines the given representations of U(n — 1) on these
two spaces, orifucU(n-1)

LmR™ =R™ L™, (3.3)

R7, is then determined up to a multiplicative constant,
because the multiplicities in the branching law are all
0 or 1, We shall choose the constant so that R, is a
partial isometry.
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We shall compute with R}, by means of its reproducing
kernel R™ (z,w). This is a function of z in M(n) and w
in M(n-1). As in (3.1), we will find it convenient to
identify a matrix w in M(n - 1) with its image in M(n),
under the injection which agrees with (3. 1):

w e w Wyttt Wi
11 1,n-1
N —
n-1,1 n=1,n-1
Wpia Wny,n-1
0 0

The properties of R}, correspond to properties of
R7., which we can express as follows. First of all, the
image of R}, is contained in"‘; therefore (see
Proposition 1. 4) if w is fixed then RZ.(z,w) as a function
of z is contained in (B)". The characterization of (B)" by

(2.7) tells us, if 6(D), g=(N),

Rr, (5gz,w)=0"RI(z,w). (3.4)

Second, the null space of R}, is the orthogonal com-
plement of "" , or equivalently the adjoint (R7.)* has
@ ™ as its image. By an application of Propositions
1.3 and 1.4, we find that for fixed z, R”.(z,w) as a
function of w belongs to ""; again (2. 7) tells us, if
&' e .pand g’ e@,

" (2,5'g'w) = (3")" RM, (z,w).

(3.5)

Finally, the requirement that R”, satisfy (3. 1) implies,
as in (2.11), that if uc U(n~1) °

™ (2, wu*)=R", (zu,w). (3.6)

The three properties of R, that we have used charac-
terize the operator completely, except for a constant
multiplier. Therefore, Egs. (3.4), (3.5), and (3. 6)
characterize R}, up to a constant. The next section is
devoted to finding a solution of (3. 4)—(3. 6), and com-
puting a normalization constant.

B. The reproducing kernel of R

We begin by proving an analog of Proposition 2. 3.
The argument which led from (2. 11) to the equation
K™(z,w)=K™(zw*,I) can be applied here, and we find

R, (z,w)=R7. (zw*,I). (3.7)
Then we can replace (3. 3) and (3. 4) thus:

R%.(g2¢’,)=R7W(2,1), ge®),, g’ (@), )% (3.8)
and
Ry, (526", 1) =R} (2, 1) 5™(6" )™,

5@, & <(Dhr. (3.9)

Let us look for a polynomial function that satisfies
(3.8) and (3.9). From Sec. IIC, we know that such a
function must be formed of minor determinants formed
from the top rows of the matrix z; this is a consequence
of the invariance under N, expressed in (3. 8). The in-
variance under (N, _,)* has a similar consequence, but
for the columns of z instead of the rows; and because
g'e GL(n-1,C), only the first n -1 rows are affected.
So, of the columns involved in a minor determinant, we
should satisfy the N, invariance by taking the first
several columns of (1,2,...,n-1), and possibly column
n. In summary, the A’s which satisfy (3. 8) are these:
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A(d;z):A1
A(d;z)=a

-1,
1 --4-1,;,(2), d=1,...,n

We note that A(n; z) = A(n; z); the notation Z(n ;2) will

be more convenient for us. Let us form a plausible~
seeming combination of these A’s. If f=(f,,..., f) and
g=1(gy,-..,8,.) are ordered sets of nonnegative mtegers,
consider

Af A‘(z):Z(l;z)fl ./)(1;,?:)31A~(2;z)f2
o Aln—=1;2)! &(n;z)f".

Laf2), d=1,...,n

(3.10)

The polynomial we have just written down satisfies
the requirements of invariance with respect t ), and
(@,,_1)*., Let us_consider the transformation properties
with respect to ,', and .y which we require for RT,
We have, if 6E s

A A¥(Bz)=5, b - 5" AT AK(z2),
;nj:fj +gj +oeee +gn-1 +fn'

1t &’ &(D),.,, then

A7 A%(26") = (6])™ -+ (57_)" A Af(2)
where
?';L;:gj+fj¢1+ " +gn-1+f"'

To solve (3. 9) with EfA‘(z) as Ry (z,I), we must have
m;=m, and m] =mj. These equations can be solved
as follows:

fj:mj—mj if 1sjsn-1,

fn:mm (3.11)

gj = m;
It is interesting that the “betweenness” relations (3. 2)
are equivalent to f, 20, g,2 0. Now Af A#(z) satisfies

all the requirements which determine RZ, (z,I) up to a
factor; therefore we may infer

R™,(z,w)=K af Af(zw ™),

Qur task is now to choose a good value of K. We
shall choose K to be real and positive, and such that
R7, is an isometry on "‘ . Then (R},)* (R}.) is the
projection onto"‘ , Or in the light of Propositions
1.3-1.6

J Ry (2,w) R, (2, 0) dy(2) =K™ (w, v).

It is sufficient to apply this formula with v =w =1I; using
Theorem 2. 2 we find

-my,, if 1<j<n-1,

(3.12)

S IR% (2,D]? dy(2)=A(m), (3.13)
From (3.12) and (3. 13) we see that, if we define

A(n)=llat af?, (3.14)
then

K=A(m')t2A(R )2, (3.15)

We have now to evaluate A(™. ), by a process similar
to that used in Sec. IID. Let us set f/'=(f;,...,f,,0) and
g =811 8p2s O), our strategy will be to relate
[1Af A%l to [|AF Af°||. First, we can relate ||A%a| to an
integral over the group U(n); if we set

B(f;g)= [ |a/a)|* dotw),
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then by (2. 18)

A(R)=B(f; ) TT (m,+n=j)L. (3.16)

Now IZ(n, u)l =1, so B(f;g) is independent of f,, and
B,(f;8)=B,f"; &)

or, using (3. 16),

(mj +n~j)!
-, +n—j)!

I af afjP = [} a7 A% 1)
=1 (m
We have made a reduction from f to f/; we have now
to reduce from g to g’. In the function Ar Af, the argu-
ments of the nth row do not appear at all, so we may
regard ||A” Af||? as an integral over the space M(n~1,n)
of rectangular (n — 1)Xn matrices. We notice that the
entries of column n - 1 appear only in the factor
Aln-1;2)*"1, We will treat that factor as we did
An; z)’ " by exploiting the fact that A7 Af is invariant
under the right action of ..*. Our reasoning is like
that which led up to (2. 16), but this time we orthog-
onalize not the rows, but rather the first n — 1 columns.
Let v stand for a unitary matrix with n -1 rows and
columns; we find

larasi= |
Min-1,n)

=5 L b Sy 12

n-1
xdo'()dvie,) T (20,

(3.17)

| a7 A%(2)|2 dy(2)
fA’v z.,)|?

-2m ¢2n-21 -1

e? dp,)

~ -1
=B(f', g) :g (m, ~m,+n-j-1)! (3.18)

where

B(f’ g) fn fU(n-l) ,Af

Now |A(n-1;v,2.,)1 =1, so B(f’, g) is independent of
&,1, and

B(f,2)=B(f,g").

Using (3. 18) we convert this equation to

(v;z,)]|2do’(v) dy(z.,).

~ ~ - [ - - 1
&7 adlE=11ar ac e A=t R DL (5.19)

=1 (m}—m;_l+n—j—1)! ’
Combining (3. 17) and (3. 19), we find

n
I (m,+n-j)!
j=1

1A Afl? = ||aF" A ||2

2
¥
—

x (my —mp+tn=j=1)!

[
I
-

X :”: [, —m,tn=)(m, ~m)+n—j—D)I]"
(3.20)

This equation is a recursion from » to n -1, because on
the one hand ||Af &%)|* = A(T.), while on the other hand if

m=(m, -m'

L

—-m ,n—l)’

Lom!_—m! ),

m'=(m, ~ m;_l, .

then ||a% A¢ I2=A(Z). To express the numerical value
of A, let us use the following notation:
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pj:mj+n—j, ”’j:m;‘*_n_j_l’

P(“‘): [l (I-ij-p'k)!
Kr
P(u)= 11 (k;-p)!,
<r
Q([J.,}J-’): I1 (“”j —p'k)!’
i<k

Qu’, p)= (k- L
Then
Hafadiz=Am)
Mkl QM) Q; B
- P(u) P(u’)

We may summarize the work of this section in a theorem

(3.21)

Theorem 3.1: Let (m,...,m,) and (m{,...,m}_)
satisfy the betweenness relations m;>m;>m,, ;. Then
there is a branching operator R, from "" to ”',
which is an isometry on "" . If f and g are defined by
(3.11), and A(m) and A(T.) by (2. 26) and (3. 21), then
with the notation of (3. 10) the reproducing kernel of
Ry, is

R™, (2, w)=A(m'y*/2 A(™ Y1247 Af(zw*). (3.22)

At this point it is clear what a strategic role is played
in the internal organization of the representation spaces
by the maximal and semimaximal states. The maximal
state of "‘, normalized, is A(m)'/2 A%(z). The semi-
maximal states are the images in(B)™ of the maximal
states of the ”" for which m and m’ satisfy the be-
tweenness relations; and they are just

AR )12 a7 A%(2).
This formula appears in the literature starting in 1963

(Ref. 5, (50) and (52); Ref. 15). To prove it, we ob-
serve that the maximal state in "" is

Am' )2 K™(w, ).

If we act on this by R7,, then according to Proposition
1.2, the result is

Am" 2 [Rr (z,w)K™ (w,])dy(w)
=A(m’)RY, (2,1)
=A(m Y2 A%AK(2).

IV. GEL'FAND BASIS VECTORS
A. Introduction: The case of SU(3)

Having defined the branching operators, we may de-
fine an orthonormal basis of each space "‘ in the
following way. The procedure is inductive on » and as-
sumes that orthonormal bases have been defined for the
spaces ”" such that R7. #0. Then each of these basis
elements may be mapped into "‘ by the branching
operator R7.; the resulting vectors are an orthonormal
basis of (B)". Each basis element is thus of the form

T=Rj R™ .. R™2"% RL1Y(1), (4.1)

L
where m, m', m”, ..., (m,, m,,), m,, are ordered sets
of n,n-1, ..., 1 indices, all satisfying the betweenness
relations. We may (following Refs. 1, 2, 4) use a
double subscript notation
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m=(Myp,...,My,,),

M =(My pys ooy Mpy ar)s €tC., (4.2)

and write (4. 1) as

Min Mon = m

T My
LT

In principle, one could say that (4. 1) defines I'(M), and
indeed every I'(M) could be found from (4. 1) by a finite
number of steps. This procedure would be far from
satisfactory as a practical technique. To obtain a more
enlightening view of the Gel’fand bases, let us look at
some low-dimensional cases. First, for future ref-
erence, we prove a proposition about the action of

on I'(M). (This was already known, of course, to
Gel’fand and his co-workers. /%)

Pyoposition 4. 1: The Gel’fand vector I'(M) is an eigen-
vector of the action of(D),; if w;=m,  +--+m,, and
& =diag(s,,...,5,), then

L ,T(M)=58,7"1 ... s2n"¥m1 p(p1), (4.3)
Proof: Let 6’ =diag(s, - 6,_,, 1) =(D),., and 6”
=diag(1,...,1,5,). Then from (3. 3) we have
L™R™ =L™ L™ R", =L™, R™ LT
Now
L7 RN =5, m1 gm, (4.4)
Indeed

(L7 R7e )(2) =RD.(e,)(26")
= R:' (25”, w)
=R (26"w*, 1)
=Ry, (zw*5",1)
where, at the last step, we have observed that the
matrix 6” commutes with anything of the form (3, 1); the
right action by §” multiplies every determinant A(d; 2)

by 5,, and so we see from (3. 12) that it multiplies
R}, (zw*,I) by this power of 6 ;

fite

th=my—my e tm -ml m

=W, =Wy 4.
The proposition follows from (4.4) by an easy inductive
argument.

Let us consider the cases of U(1) and U(2). The ir-
reducible representations of /(1) are one-dimensional,
because the group is commutative; the Gel’fand basis
vector in "'“ is

F(mu;Z):(m11!)-1/2A1(2)- (4.5)

The Gel’fand basis vectors in a representation of U(2)

-are the semimaximal states, computed in the previous

gsection. We have
m m
r( 12 mll 22)
Mmyp L T fa &
=A my, A1) tAa(2)24(1)
m m “1/2 - m m. -
=A( 12 my, 22) Al"'u 12 a,m2 "'11A12"'22 (4. 6)

or
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={(myy = myy + 1)1]H/2

X[(myp + 1) mgp! (myy —mgp)! (myy =myy)! Fr/e

xa, MRy T2 A T2 (4.7

For the Gel’fand vectors of U(3) we cannot expect such
simple expressions. The reproducing kernel R™, can be
made to yield expressions for them, if we use the fact
(Proposition 1. 6) that

my3Ma3Msg (z, w)

M12Men
Myq Myg Myg
=T Mo Myy 3 2
T my,

XT (m12 mzz;w)-.
my

We can manipulate (3. 22) into a form like (4. 8), by
expanding the determinants. We make use of a few
simple cases of a classical formula in determinant
theory; for future use we state the proposition in this
way:

(4.8)

Proposition 4.2: Let z= M(n) and w ¢ M(n - 1}; inject
w into M(n) as in (3.1). If S,(n) denotes the set of all
ordered d-tuples (jy, J,, ..., J,) such that j, <j, <---<j,

<n, then
Ad;zw*)= -, a,(2) A, (w) (4.9)
A (d; zw*) = A, (2) A, w). (4. 10)

JES 3 -D
Proof: By a well-known formula (cf. Ref. 36), if
J, J'eS,(n) and z, veM(n)
af(e)= | B aL(e)ad ).

We apply this formula with J’' =(1,...,d) and v=w*,
and J either (1,...,d)or (1,...,d-1,n). We then have
AL (2)=A . (2). IfJ=(1,...,d), then

AY (v)= AL, (w) = A, (w).
We arrive at the formula (4. 9); Note that because w lies

in M(n-1), A,.(w)=0 if J” contains the index n. In the
second case, we find

A(d s 2w*) =

77="54 (m) B8,.(2) AV E1 (w),
=54

In this sum, the special form of w implies that

Al;41"(w) vanishes if J” does not contain n, while
Al oo.;d -1"" (w) — Al...}.d‘l(w).

So we arrive at (4. 10).

Now let us use (4.9) and (4. 10) to expand the ex-
pression for the branching kernel, as given in (3. 22).
We find

«1/2
R™ (z,w)=A(m')"/? A(::,) Al(zw"‘)"1 Aa(zw"‘)f1

/, s
X A (2w*)P2A, (20%) 2 Ay (zw*) 3
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-1/2
:A(m’)'”zA(m,)
m

X(A,(2)B ) + 8y(2) Byw))Pay(2)
X B,(2)2 K ()73 (4,,(2) B, (w)
+ A23(Z)K,z(w))f2A123(z)f3

or [after using (3. 11) and the binomial theorem]

R;".,(z,w):A(m'rl/zA(;l”,)"’z 2 (’""") (’”23;”‘22)

o, 8 a

(4.11)

x Al(z)“Az(z)mlz-m”-a AS(Z)mla-m12A13(Z)B

Moa=Moo=4 -
XAzs(Z) 23" M22 Ama(z)"'as An(z)"‘zz ma3

X [Kl(w)""’ Kz(w)mm‘mzz*oz-ﬂ Alz(w)mzzl- (4. 12)

Now compare the factors involving w in this expression
with (4. 7). To extract from (4. 12) an expression which
multiplies

m m =
I"( 12 22 ;w> .
My

we must cellect the terms of the sum for which o +8
=My, ~ My, and for normalization we must multiply
them by A(; )*/%. Thus, (4.8) implies

Myz  Hlyy Mgy

r My My
my

=[5 = mgy + 1) g = 1y + 2)!

X (Mg = Mgy + 1)1y = mgp) (myp —my))!
X (g =gy + 1)]H/2

x [(mls + 2)1(mgg + 1) mgg H(my, — mpg)l (Mg, — mg)!
X(myg—m) (Mg —mgy +1)!

(Mg = Map) 1 (Mg — gy + 1)1]H/2

x > (m12 - mza) (mzs - mzz)
a+f=myy-moy @ g

m, .~

23

m. Myn=m
o 12 13712
X AZA, A,

m, =8

227 AL,g" 3, (4.13)

The requirements that 0 sa sm,, —m,; and 0 < sm,,
—m,, are implicit in the binomial coefficients.

-m myo-
XAIZ"'ZZ 33 AmB A23 23

Now another expression for the boson polynomials of
U(3) is known (Ref. 5, Eqgs. (43), (44)):

myg My 0
r My, Mgy
mll

= [(myy = myp) Hm g, — myg)!

X (M= Mgy + 1) (Myg =g + 1)1 /2 [(myy =)t I
X[(m 1y + 1) moy 1 (myp = myy ) (myg — myp)!
(Mg = Mgy + 1)1y, —m )] 2/2
XAI"'u""za Az”‘lz""u A3”‘13""12 Am'"zz Als"‘zs-"'az
Ky F Mgy = Mggy My =My My =M+ 15 8185,/8,8,,).

(4.14)
It might appear that this formula is well-defined only
if m,, —m,, = 0; if m,; —m,; <0 then the factorial of a
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negative number appears in the normalization coefficient,
and zero denominators in the hypergeometric series.
Working formally, one can make these two troubles
neutralize each other, by recourse to this relation

(Ref. 37, Eq. 15.1.2):

. 1 )
cl-lg}. () F(a, b;c; 2)

= (@)1 (B) oy ((m + 1)1 )72/

Xzml'Fa+m+1, b+m+1;m+2;2).

We apply this formula with —m =m_, -m,; +1, and find
a counterpart to (4. 14), valid if m,; Sm,,:

My, My 0
r My, My
m

= [(ng =My (myy —my)!

11

X (mlz - m22 + 1) (mj.s - m23 + 1) ' ]1/2[(7”23 - mu) ' ]-1
X[(myy + 1) UmngyH (my, = mgg) ! (my, = my,)!
X (Mg — Mgy + 1)1 (g — m )] 22

xAzmlz-m23A3"'13""1zA M3z A

117722 5 Ma3TMiy
12 23

13
X F (Mg = My Mgg = M pp5 Mgy =my; + 15 A8 /AAL).

(4.15)

Let us verify that (4. 14) and (4. 15) agree with (4. 13).

If m,, >m,,, then the conditions on ¢, implicit in (4. 13),
can be stated as follows: If we set

J=a—my, +my,,
then
0 <j <min(my, — My, Myy—my).

The same range of the summation index j is to be dis-
cerned in the hypergeometric series that occurs in
(4. 14). The rest of the verification is routine. In the
case m,, Sm,,, the condition on a is

0 <a <min{my, — my,, My —m,,)

and o can be identified with the summation index in the
hypergeometric series that occurs in (4. 15). Again,
the verification offers no difficulty except tedium.

We are now in the comfortable position of having
found out something we already knew. To carry our
evaluation of Gel’fand states beyond the case of U(3), by
the means so far employed, would be extremely difficult.
One could, indeed, expand R” (z,w) with m
=(m, mymym,,) and m’ = (m;,m,.m,,) as in (4. 11), but
in the resulting sea of determinants it would be very
difficult to recognize the Gel’fand states in w, or to
collect terms properly. The trouble lies in the fact that
there are identities among the determinants A Jaored when
n >3, so that the expansion analogous to (4. 11) is full
of redundancy. To get the algebra under control, we
must consider our equation (4. 13) from a different view-
point, which is explained in the next section.

B. Generating functions: for (/(1), U(2), and U(3)
If one contemplates the sum in (4.13), one may be
struck by the fact that every monomial of the form

-3 a o @ a
A" 837050 AT (4.16)

a,74,%4;
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occurs in the expression of precisely one of the Gel’fand
polynomials. The exponents are related to the indices
in the following way:

QyF Q=M =My, O+ Oyy=Myy =My,

3+ Qg =Mz — Myy, [012+ azazmm_mu]) (4.17)

Qg =My3—Myp, qpp= Mgy =Mgg, Qa3="M330

The equation in square brackets is redundant, but is
included for the sake of symmetry. The coefficient of
(4. 17) includes

[a,ta,Ta,l eyt

and other factors which are determined by the indices

m ;. These circumstances suggest that it may be useful
to combine the boson polynomials, multiplied by suitable
coefficients, in a generating function in which all the
monomials (4. 17) occur, with coefficients that cause the
entire sum to have a simple structure.

To explain how we shall make this combination, we
introduce some convenient notation. As we have done
before, we use the letter M to stand for the array of
indices (m ;). A boldface a will denote the set of seven
integers a,,..., @y, in (4. 17), and that monomial it-
self will be denoted A%, The product a,! --~ a,,,! will be
denoted a! Qur crucial observation is that if I'(M), as
defined by (4. 13), is multiplied by an appropriate fac-
tor N(M), then every term in the product is of the form
A*/al, and the terms that occur are precisely those for
which M and a are related by (4.17). If we use the
notation

S(a, M) (4.18)
to stand for the relations (4.17), then
NM)T(M)= 2, Aa%/al (4.19)

a:S (a M)

Now we must add together all Eqs. (4.19), multiplied
by suitably chosen powers of indeterminates, to form a
generating function for the set of all the boson poly-
nomials. These being determined by six indices, the
summation must be sixfold. The most convenient set of
indices is not M but rather

fi3 Sa3 S
F= Jie Ja
Ju

where [cf. (3.11)]

Sfig=myy=my 4, isj~1,

4.20
S =myy. ( )
We introduce indeterminates
A3 Agg As3
A= Agg Agn
A1q
and set
AT =11 A e
i<j
So, from (4. 19), we find
7\ AF r = F,a t
23 AN T (M) § MSZ()M)A A% a! (4.21)
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As we already remarked, every « appears in (4. 22)
exactly once, so a determines an array M and, by
(4. 20), an array F. For the latter, we find

fiz=as,
fas=
faz=

Jiz=ay

043+ U3,
Q123
(4. 22)
+ Qlg3,

Joa= ayy

f11= 01+ Oqg + 03+ ay3.

+ 0123,

Writing (4. 21) with more detail on the right-hand side,
we find

%} ATN(DOT(M)

=2, A3 T3Ngg ¥13* 02304 *123) 1, %2 X238y, V12 %123
a
X Ay MR 43 %123A Y oy |
o
=¥ (Ag181) 1 (X1282) 2(A1385) *3( N1 Agp Ayp) *12

X (A1 R23813) “13(AgpNa50e5) “23( Ay Ao kg3 A123) *123/ |

4.23)
or
‘%‘, ATN(MT (M)
=exp(Ayy By + Xya8g + Ay3dg+ Ay A9 Ay
+ 11023813 + A2 Aagag + Ayt AooX33Aqa3). 4.24)

The expression in brackets follows a pattern: The de-
terminant A; is multiplied by A;; if the Zth element in J
isj.
The normalizing factor is found to be
N(M) =[(m3+2) ! (mg3+ 1) (myy = mgz+1)!
X (myg = myy + D2 [(my3— myg + 1)1
X (my5 = Mgy +2) 1 (mg3 — magz + 1) (mqq — Mgy)!
X(myp = my M Mgl (M3 = My5)! (Mgy = mg,)!
X (145 = My) ! (g — Mgg)l (mgp = gy + 1)1 /2,
(4. 25)
The result (4. 24) is unexpectedly simple, and capable
of being generalized. Before we look ahead to U(4) or
Uln), let us look back at the boson polynomials of U(2)

and U(1), where the equations analogous to (4. 24) are
easily found from (4.7) and (4. 5). We have

33 M2 ™y, My, PN UATULY) r UBTLLY)
12 22 11
myy myy

=exp(hyyAr + X289 + A1z Ayp)

where

N(miin:ln) =[(myg + DI (myq = mgg + 1) L1y,
X (myy = map)! (myg — myy) 117272
And, of course,
2 Ay M N(myy) T(my,) = exp(h, &)
where

N(my,)=(m,1)/2,
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Some hint as to what is going on with these normaliza-
tion coefficients may be gained from these relationships:

m m 0
12 22
m m
_ 12 22
N my, My =N ( m >
11

m 0
N u > =N(m N
( myy (71:1)

To prove that the three cases we have seen are examples
of a general pattern is the task of the next section. For
more information on the boson polynomials, see Ref.

33.

(4.26)

my

(4.27)

C. A partial extension to U(n)

We shall construct a generating function, similar to
(4. 24), for the boson polynomials of the representations
of L™ of U(n) with m = (my, m,, 0, - -+, 0). These repre-
sentations correspond to Young diagrams of one or two
rows. It will be convenient to simplify the general nota-
tion m,; for the Gel’fand indices by setting

my;=a;, lsjsn,

f,naj:bj’ ZS]’S}’[, b]_:O.

So, in most of this section, a typical Gel’fand pattern is

0:--0 0

0...0 ) (4.28)

"a, by
1

We let M’ denote the pattern (4. 28) with the top row
deleted. Instead of the array (f;;), we use
pjza.i_aj-l’ ZSan, p1:al, ( )
. 4,29
q;=b;-b;,4, 3<j<n, qz=bs.
Theorem 4.1: The boson states ['(M) such that M is

given by (4.28) have the generating function

2 NMIT(MIAPL e o oA P20 o 30
a,b
= exp(E MO, +T u,,A,,,> (4. 30)
i i
where

n 1/2
N(M) = ( M{a;—b;4 + 1)!)
j=2

n -1/2
X((a,,-—b,,)! Il (i),!q,!(a,_1—b,)‘.(aj—b,-+1))) -
i=1

(4.31)

The proof of these formulas is inductive. We note
that they are valid if 1 <# < 3. Suppose the result is
proved for z - 1; we want to prove it for n. We start
with the definition of T(M), in the form [cf. (4.1)]

(M ;z) = (RET(M"))2)
where

m:(a", bm 0,..., 0), ”1,:(‘211-1: bn-lp 0,..., O);

applying Proposition 1.2, we have
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C(M;2)= [yma, RO (2, )T (M5 w) dy(w). (4.32)
Now by (3. 22),

-1/2
R™ (2, w)=Am)224(",) & (zw*)Pn
m m n

X Ay, (z*)tn Ay (z*) A (2a0) ™,
(4.33)

We must expand this expression into a sum of terms,
each of which is a product of a factor depending on 2

and a factor depending on w. By Proposition 4.2, we
have

8y (e =;21 8/() 5, ) (4.3
A (zw*) = A (2) (4. 35)
A, (zw*) =j<§n_1A,~k(Z)K,k(w) (4. 36)
A1n<zw*>=:2: 8,205, (w). (4.37)

We substitute (4. 35)— (4. 37) in (4. 34) and expand by the
multinomial theorem., To express the result of this

manipulation, we find it convenient to introduce indices
a;, with 1<j<n, and ap, with 1 <j<k<n; we then set

A"(z) =11 Aj(Z)aj I Ajk(z)ajk
i ik

and

al =HC!J! Hajk!.
H ik

Further, we set

Bj=a;+ta;, 1<jsn-=1, (4.38)
n=1
S(M) = {Q :Zi aj =Qpq = bm a, :pn’
i=
27 0 =b,, Eajn:qn}' (4. 39)
i<k
We find
. m \1/2 .
R,’::(Z, w) =A(m)- /2A< I) Z/ pnl qn! (an-l - bn)!
m acS(M)
Xb,.11 (a!)1a%(z) A8 (w)". (4. 40)
Now let us put
it oty A2 @0) T (M5 ) dy(w) = (B M. (4.41)

We then find from (4. 33) and (4. 40) that
m \-1/2
T(m;z) =A(m)? /2A<m,> bala (@, = b )b, 4!

x 2

acSW)

(B|M)2%(2)/al. (4.42)
Further progress on (4. 42) would seem to depend on
evaluating (8|M"). Rather than do so, we shall use cer-
tain aspects of the structure of (4.42) to relate a com-

bination of the I'(M ; z), for fixed M’, to P(M’, z). We
shall then be able to carry out the induction step. Qur
manipulation depends at one step on regarding the de-
terminants 4;,(z) as if they were independent variables.
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Of course they are no such thing; so we must take care
to justify that step.

First, we introduce n(n +1)/2 independent variables
&j, 1<j<sn; &,k, 1sjsksn,
We use the same indices a and 8 as before and set
Ao =114, AN,
j i<
We define polynomials ['(M), for M of the form (4. 28),
by

A m /2
F(M):A(m).:/zA(m,> Palania, 4 - b,)10,4!

x Y (8|M)a%/al.

acSH)

(4, 43)

The reader should note the similarity of form between
(4. 43) and (4. 42), while remaining aware of the im-
portant distinction between 4;, 4;, on the one hand and
31, ﬁjk on the other.

Consider the polynomials f‘(M) for a fixed choice of
the subarray M " put all possible choices of the indices
a, and b,. From (4.43) we find

1z a ™ 1/2 X
Zb: A(m) A (ml) [pn!qn !(an-l - bn)! bn_l ! ]-
@pon
~ on
XT(M)A, ",

=0 X

apahy, ac SHM)

2@ MM al (4. 44)

Now we must take the condition @< S(M), defined by
(4. 39) and express it in two stages: first, a condition
on the multi-index B, and then a relation between «, B,
and {(a,, b,). From

n-1 nal

Z; o;=a,,-b, and Z;x ¥y =qn=b, b,y
j= i=

we infer
ol
Z/ Bj = an-l - bn-l'
121
Therefore, if we define

SyM)={B: 23 Bjp=bpy, 20 B;=py~ by}
i<r J

and
S (B;a,b)={a: 0=8; if j<k<n; a;+a,=8;
a,=Py; 2 0;=q,}
then
ac S(M) < Bc S (M) and a € S,(B; a,, b,,).

Therefore we may express the right-hand side of (4. 44)
as follows:

DI 2

ansd, BS S1(M) & Sy(Bjan, b,)

a G(BIM;) A,,“nunn“in/a!

= L B T (B a,A)
B S4(M") 00, =8; i1 aj! (I"!
. \a -
x('ﬁ‘ (u,.A;n') ”') g Ayt
j=1 o Q! ik B!
- net (A, +u A )8 A P
=exp(AnA") E (ﬁlM') I ( i ""’;Aln) I Jk' .
BE 540 it B! i<k B!
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The most important propertles of this express1on are
the fact that it depends on A, j» On K, and on A » only
by way of the combination

A+, 4,

and the factor exp()\"Zn). These properties must be
shared by the left side of (4. 44). It follows that if we
obtain any other expression for the left side of (4, 44)
in the special case A,=u,=0, then we can obtain the
general case by two operations: the transformation

Aj =B+ 1A, (4. 45)
and multiplying by exp(\,4,).

Now in the special case A\, =
(4. 44) is just

p,=0, the right side of

A" (g = bpug) ! by T (070) (4. 46)
where
(o bt 0°+-0
Qyey byy 0°°°0
M,O = an—Z bn-Z °

° °
. .
o .

What else can we say about (4.43)? Two observations
can be made. First, if we substitute &,(z) for A, then
I"(M’°) becomes I‘(M'0 z); indeed that substitution turns
T'(M) into T(M;z) for any M, as we remind ourselves by
comparing (4.42) and (4.43). Second,

I"(M’o;z):F(M';z). (4.47)

This equation follows from (4. 32) and the fact that, in
(3.22), if m;=m} and m,=0, then R}, =K".

But, by the induction hypothesis, we have a generat-
ing function for T'(M’;z). It might seem, therefore, that
we can obtain a generating function for the polynomials
I'(M;z) by applying the transformations which were
described at the end of the previous paragraph but one,
There is a catch, however. The transformation (4. 45)
makes sense because the variables Z,, are independent,
whereas (4.47) is an equation involving the function
A y(z), which are not algebraically independent. If we
could assert not merely (4. 47), but an equality between
T (' and T(M’), then we could proceed easily, As we
only have (4. 47), we must carry out the induction step
as follows.

We have already supposed (4, 30) to be true withn -1
in place of n. That is, if we define polynomials T
in the A by

2 NI DIt e d 7 gt P00
nt
—exp(L NAE 20N pkAjk>
i=1 i<k€n-~1

then the substitution of A ,{z) for A, turns T'(M’) into
T'(M’;z). 1t should be emphasized that this definition of
T'(M'), where M’ is a Gel’fand pattern (4. 28) with n -1
rows, is of a different sort from the definition (4. 43) of
T'(M) where M has » rows, We may infer from (4.47)
that

C(M") =T (M) + R, ,

where R, is a polynomial function of the A, that van-
ishes if A;=4,(z). So we have
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2 NOIVEOI) = Ria) M >0 204y o 8

:exp(é A+ 2 7‘1‘“124‘&)«

i=1 j<rEn-1

(4.48)

Now let us make the transformation (4. 45) and
multiply by exp(\,A,). The polynomial R, is trans-
formed to something else, say RM, exp(A, A o). Our rea-
soning that led from (4. 44) to (4. 45) shows us that
I'(M'") is transformed into

+1/2
E A(m,)-i/zA (:ZI) (an-1 - bn-() ![pn!qn! (an-1 _bn) 1 ]-’

e b”
x OO ASnp, o
Therefore, if we set

NM)=A(m")12A (m) e

X (an-i - bn-l) ! [pn!qn! (an-l - bn) ! ]-1 N(MI)’
then (4. 48) becomes
; N f'(M) >‘1P1 ces An’n pot2ooe u"“n

(4. 49)

_exp(L MA+ 20 MuLd, )

j<r€n
+ eXp(Anﬁn); NM) Ry Atooon, Pretp,@ecopy =1,
(4.50)

If, in (4.50), we substitute A ,(z) for &,, then we ob-
tain (4. 30), if R,, is made 0 by that substitution.

Now R,. was a polynomial which was annihilated by
that substitution. All the relations among the 4,(2)
and A,,(z) are consequences of the following: If
Isj<k<isn-1, then

Aj(z)Akl () - Ak(z) Ajl(z) +4,(2) Ajk(z) =0,

Therefore, R, belongs to the polynomial ideal gen-
erated by the polynomials

DA —BRA A A

(4.51)

If we made the transformation (4.45) then the above
expression becomes

B0 -8,0;+8;45)

+ xn(ajnakl -4, Au + B‘In Bik)a
Now we already know that the first parenthesis vanishes
if A;=A,(2); and so does the second, as we can easily
check. In short, the relation (4.51) is not disrupted by
the transformation (4.45); the polynomial R, vanishes
if A, =24,(2); (4.50) implies (4. 30); the induction step
is valid,

All that remains is to verify (4. 31). From (4.49),
using (2.26) and (3.21), we find

(an - bn + 1) ! (an-l - bn-i) !
Pnlan @y -0 (@, - b, +1)!

N = ( )HZN(M’)

= (((%’1._:_::_)_1!)_!> 1/2

(2, = byap)! ve
(Pn 1,1 @y —b)j(a b +1)) N,
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Therefore, (4.31) can be proved by induction. The proof
of the theorem is complete.

The difficulty in this proof, related to (4.51), occurs
with greater complexity if we try to carry out the argu-
ment for representations L™ with » more general than
(my, my, 0+ +0). That part of the induction step involved
in going between (4. 44) and (4. 46) may be generalized;
but the relations among the determinants A ;(z) seem to
be disrupted. The author has not succeeded in general-
izing the proof of Theorem 4. 1.

V. PRODUCTS OF REPRESENTATIONS OF SU(2)
A. Relation to U(n)

It is well known that (in the notation of Ref. 19, Sec.
2) the representation @, of SU(2) with angular momen-
tum j is equivalent to the representation of SU(2) on
‘2’ 9 and the normalized state with z-component of
angular momentum equal to » can be taken to be

2j0 .
wfu(zlb le) = F( j+ m’ Z)
:Zn.j’mzlzj-m/[(i + m)! (] - m)! ]1 /20
The coupling of » angular momenta j, -+, j, can be de-
scribed by the space (j1 «++4,) of polynomials in 2n
variables (z,:1<a<n, b=1,2), homogeneous in z,
and z,, of degree 2j,. [Thus (7‘) is synonymous with
‘“'0’.] H we let z stand for the #X2 matrix

211 232

z=| " " leM(n,2),
2;1 Z;z
then the action of SU(2) on (@), . . -, j.) given by
(RN () =flzw), ucSU(2), fe @)U:---i,

is the Kronecker product

@!1®' ‘ '8@1,,'

In this section we shall explicitly decompose this re-
presentation into its irreducible components.

The first step is almost a standard opening in this
game: Shift attention from covariants to invariants.

Proposition 5.1: There is a one-to-one correspon-
dence between embeddings T of (7') into (7'1 ceed,)
that intertwine the representations of SU(2), and invari-
ants f, in (7'1 -+<j.f), given, if we set w= (wy, w,), and
z€ Ml(n, 2), by

7 ()= B i@,

m==§

(5.1
Proof: Any linear map whatever from (j) to
(Q)y + -+ j,) can be associated with a polynomial in

(Q)Ur - - - juf) by (5. 1); the correspondence is one-to-one
both ways. We observe that

Z;(_ 1)j""¢fm(w1, wz)‘l’fu(tn §2)
22 (_ l)fﬂnwll-mwz.i#mgll*mgzj-m/[(i + m)! (] - m)! ]

= (un & — wp£1)% /(2))1,

2285 J. Math. Phys,, Vol. 16, No. 11, November 1975

and this is invariant under the action of SU{2) on the row
vectors w= (wy, w,) and £= (g, £,). Therefore, if u
e SU(2),
2= D)™y () (R 41,)
m
=22(= D™y (w) .

Let us apply to both sides 'of this equation an operator

T:(@)() ~@) - - +J,). We find
2 (= 0™y () T(R, 47, (2)
=22(= )™ )(2)

()

On the one hand, if TR, =R, T, then we have

(5.2)

s (2) =1 (= )™ ) BT (2)
=2 (= V™Y (wu) (T, )zu)

=fr (zj;) >

that is, fr is invariant. On the other hand, if fr is in-
variant, then we infer from (5. 2) that

2(=1)™ g (wu) T(R, ) (=)

=12 () =)
= D= 1™ ) T ).

But the polynomials ¢/, (wu) are linearly independent, so
T(R, W) (2) = T(¥},) (zu)

=R, (TY})(2);
therefore TR,=R,T.

This proposition shows that we can find all the sub-
representations of B °,n equivalent to @, by
finding invariants in (y - - -7j). We must consider the
normalization of our maps ()() ~(Q)(jy - + *j,), and if
the multiplicity of (D); in ,18’ <o+ B(D);, is greater
than 1, we want to select pairwise orthogonal subspaces
of (7'1 «++j,). Both of these matters are covered by the
following proposition,

Proposition 5.2: Let T; and T, be maps (i)
*@(7'1 ++<j,) which intertwine the representations of
SU(2), and let f7, and fr, be the invariants associated to
T, and T, by Proposition 5.1. Then, if 3, ;b'e(j),
(To¥', Tyd) = (2 + 1, S ), ).

Proof: The operator T#7T, commutes with SU(2) acting
on the irreducible subspace (7'), s0 it must be a multi-
ple of the identity; say T,*T, =cl. Equivalently,

(To3', Tyg) =c(¥’, ).

What is ¢? Consider fr, and fr,. From (5.1) we see

(sz)le) :mZ/'(w{m, wim')(TZw{m lejm')°
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But the ¢/, are an orthonormal basis of (7‘), 50 we
have

(frzyfrl) = i c=(2j +1)c.

m2oj
This completes the proof.

We can now describe the relationship between the
generalized vector coupling coefficients and the invari-
ants. Suppose {f,} is a complete orthonormal system of
invariants in (7'1 <+ +7,); set

N My oM 3 :
fa(z) = mlszol.m (0’]‘1 1 . °jn n) wmlj_(zllr zlz) ree Kpin’;(znlx znz)“
n

(5.3
Then the ranges of the corresponding operators T, are
orthogonal to one another, and span that subspace of
(7'1 «++j,1) which transforms like @(j,.), The normal-
ized vectors which transform like y,7 are

5 ((,;{nl--»m_un>

Wip= (2, + 112 _
" " myesemy, Ty ']n-lmn

x Lbfnll(zu, Zig) e e l/’i",,'_ll (Zpa1 15 Zpat,2) (5.4)

where

0_;7:"1 . '.mn-ljn>: (~ 1)"‘n"1n<m1 te . m'f'l - m"). (5. 5)
e o]n_lmn jl *° °_7n-1.7n

Our task is now to find a complete orthonormal sys-
tem of invariants in (jl .+ +j). We do this by means of
the following construction, which is due to Moshinsky. ®
(See also Ref. 11 for a more general result.)

Proposition 5. 3: The polynomials
Fule)=0(M ;2)

where
211 12
2= s Z~=
Zp Zp2
for which
ay=b,=jy+ e +in (5. 6a)
QG+ b, =20 +---+74,), 2<k<n-1, (5. 6b)
aI::zjl (5. 6C)

are a complete orthonormal system of invariants in
@Ul -++j). I jy+ -+ +j, is not integral, then there are
no nonzero invariants in Gy i)

Note that the matrix z is transposed in the boson
polynomial. This detail reflects Moshinsky’s basic _in-
sight: The definition of the representation spaces "‘
and the action of U(n) on those spaces are complemen-
tary. The former uses row operations on the matrix z,
that is, multiplication on the left; the latter uses multi-
plication on the right.

Pvoof: The last sentence in the statement of the
proposition is easy to prove: If 2(j; + .-+ +j,) is odd,
then for u=—1, Rf=—7for all f in (@G *+j,). In the

2286 J. Math. Phys., Vol. 16, No. 11, November 1975

case that j; +-.-+j, is an integer, we begin by showing
that the invariants in (j1 -++j,) are related to certain
elements of B'*%"'0 “yhere (5.6a) is true. Let f be
such an invariant, and let

211 2

fla)=f1 , z2& M(n).

21n 22n
Now f is invariant under multiplication on the right,
i.e.,
flewy =f(z), ze M(n, 2),

if # € SU(2). By Proposition 1.7, this invariance can be
analytically continued to all # in SL(2, €). It implies
that f; is invariant on the left, i.e.,

folgz) =fy(2), ze M),
811 £20-:-0
&2t £320---0
0 01
g=. . . , detg=1. (5.7
0 0 1

But f(2) does not depend on the elements of z below the
second row, so we may put arbitrary entries in the
third and lower rows of g. In particular, we have

fo(gz) :fo(z)
with [cf. (2.4)]

(5. 8a)

(5. 8b)

Equations (5. 8a)—(5.8b) imply that fyc (B), which we
recall is the set of all elements of satisfying {2.5),
and is the orthogonal direct sum of the spaces . To
see which of the latter f;, belongs to, we consider (2. 6).
Let 6=diag(d;, 8,, 5, ..., 5,); then because
diag(by, 6,"1) € SL(2, ©), (5.7 says that fo(62) =fy(2).
Therefore, we must have my;=-+.=m, =0, and m; =m,.
¥ 6=diag(3;, 6;,1,..., 1), then by the fact that
€@+ -+, we have fy(8z) = 6§91 )f (z), There-
fore, my +m,=2(, +---+j,); that is,

foeB(.},J ,0,...,0), J:j1+'°'+jn-

We have placed f; in the space spanned by Gel’fand
polynomials with the first row specified by (5.62a). To
show that (5. 6b) and (5. 6¢) are appropriate, we consi-
der the action of diagonal matrices on the right on f,.
Because f € (7'1 .e+j.), we have [with &
=diag(&, ..., 0,)]

F(62) = 8,1 . .. 8, 2nf(z)
fol2®) =8,%1 ... 8, nf(2), ze Mn.

(5.9

When we compare this statement with Proposition 4.1,
we see that f; belongs to the subspace spanned by the
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Gel’fand polynomials whose indices satisfy (5.6a)—
(5.6¢).

To complete the proof, we must show that each such
boson polynomial actually gives rise to an SU(2) invari-
ant. But by Proposition 2.2, because a,=5, the poly-
nomials we are concerned with are expressible in terms
of the determinants A,(z), and these are indeed invari-
ant for SU(2).

B. Explicit decomposition

We have obtained a solution to the problem of resolv-
ing @,1@’ SRR @,"4 into irreducible subspaces on
which the representation is equivalent to i, Indeed,
(5.3)—(5.5) relate these subrepresentations to invari-
ants in (jl -« <j,); Proposition 5.3 shows that certain
boson polynomials are a complete orthonormal system
of such invariants, and Theorem 4.1 gives us these
boson polynomials, wrapped up in a generating function.
The tagk of this section is to unwrap these results, in
an explicit formula for the coupling coefficients.

First, we can make explicit the “extra quantum num-
bers” denoted by o in (5. 3); the boson polynomials in
which we are interested are labelled by patterns

0--+0

satisfying (5.6a)—(5.6c). It is convenient to introduce,
besides the angular momenta j,,...,j,, members

7y -7, defined so that
ay=jrt-tjtr, b=j+-- (5.10)

Then (5. 6b) is satisfied. To satisfy (5. 6a) and (5. 6c)
we must have

ctji=7y.

" =j, 7'":()0 (5. 11)
We then have
pi=hitri=ria), @i=ji—(r=74); (5.12)

since these numbers must be nonnegative integers, we
must have

(5.13)

The requirement on the Gel’fand pattern that a;_; > b,
implies

|7, =7ial<jy, 7i—70%j; (mod 1).

(5.14)

Because a,, =a, we also have 7,_; =j,. Conditions
(5.13) and (5. 14) can be summarized by saying that
71 =74, the triples (j,, 1, 73), (s, 72 #3), and so on to
(inats ¥n2s 7nt) Satisfy the triangle inequalities and the
condition that the sum of each triple shall be a whole
number, while finally +,, =j,. With these indices

715 .04, ¥n We can replace (5. 3) by the more explicit
expression

vyt Y02 g

ml . e m"
. _ . . i 3
F(M b Z) - E Jee *In wjr:l(zlh 212) e Zl)m""(znly an)'
myeremy Vyo oW,
(5.15)
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When we expand (4. 30) and collect the terms with ap-
propriate powers of Ny, ..., A, By ..., M, We getan
expression for the coefficients in (5.15). The number of
summation indices in the expression for one such co-
efficient turns out to be (n— 2)°. The generating function
for I'(M ;z) is also a generating function for the coeffi~
cients; in the case n=3, we recover essentially the
generating function for the 3 - j symbols, as obtained by
Bargmann [Ref. 18, (3.21)] and Schwinger (in Ref. 22).

VI. CONCLUDING REMARKS

The theory presented here is by no means the last
word. In the first place, the multiple vector coupling
coefficients of Sec. V require further study. The num-
ber of summation indices, (- 2)?, is too large. For
invariant combinations of » angular momenta, the sim-
ple scheme of using 3 - j symbols to couple j; and j,,
coupling the resulting angular momentum 7, with j;, and
so on, would require no more than » - 2 summations.
If one could simplify the expression (5. 16) for the boson
polynomials by eliminating the appearance of some of
the determinants 4,;, then the subsequent formulas
would be simplified.

The description in Sec. IV of certain boson polynomi-
als can be extended. First of all, one would like to ex-
plore the boson polynomials of representations L™
where m = (my, m,, mg, ° **) with m3> 0. As was men-
tioned at the end of Sec. IV C, the induction procedure
used there does not seem to be valid in the more general
setting, without some modifications.

A broader extension of the boson polynomials can be
contemplated, Let us consider the matrix elements of
L™ with respect to the Gel’fand basis. It is convenient
to use the abbreviation m for (m,,...,m,) and to use
the letters M’, N’, -+ for Gel’fand patterns of n— 1 rows
satisfying the “betweenness” relations with respect to
m as the top row. We denote the matrix elements by

Nl

L m

MI
defined by the equation:

sl

NI
m m — . m
L"F(M’) -; L m’,u 1"(1\},,)° (6.1)
From (2.1) we see that we may write (6. 1) as:
m N’
I‘(M,;zu>:z' Ll m ;u I‘(;;i;z). (6.2)
N M’
Or, because of the orthonormality of the I'(M),
N’ m -
m
L| m;u :/I‘(N,;z> I‘(N,;zu) dy(z). (6.3)
MI

From (6. 3) it is clear that

NI
Ll m
Ml
is a polynomial. In fact, this system of polynomials was
introduced by Louck in 1965 '"; their identification with
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matrix elements of the representation is found in Ref.
35, Eq. (5.2.3).

A recently published encyclopedic survey of the theory
of group representations (Ref. 39, pp. 155, 6) notes the
fact that complete descriptions of the finite-dimensional
representations of the simple Lie groups, that is, ex-
plicit matrix elements, have remained largely unknown,
The further study of the polynomials

Nl
Ly m
MI

is thus a concern of both pure mathematicians and
theoretical physicists. The result of Sec. IV of this
paper is a modest contribution to determining those
polynomials; it raises the hope that a simple general
description is possible,

Beyond the groups U(z), one can look to the other
compact Lie groups. The Borel—Weil theorem applies
to all of them; thus in principle the method of this paper
could be generalized. The technical difficulties would
be considerable,
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In the Mathews—Salam formulas for the (space-time cutoff) Schwinger functions of Y, no restriction on

finite mass renormalizations for the boson is necessary.

1. INTRODUCTION

In an earlier paper' it was shown that the Matthews—
Salam formulas® can be used to construct the Schwinger
functions for Y, at least in the presence of a space—
time cutoff. Unfortunately, this could be shown only
under a certain restriction on the finite renormalization
of the boson mass: It had to be essentially nonnegative.
But in Glimm®** and Glimm and Jaffe® it is shown that for
the semiboundedness of the Y, Hamiltonian such a re-
striction is unnecessary. This is achieved by separating
out contributions coming from low fermion momenta
and estimating them in a way different from the estimate
for the high momentum contribution. Since only the lat-
ter need renormalization the counterterms can be made
smaller by choosing the “lower momentum cutoff” high
enough. In this paper we carry through the same idea in
the Euclidean framework invented by Matthews and
Salam.?

2. IMPROVED INTEGRABILITY ESTIMATES
We use the notation of Ref. 1. In particular, we write

for AcC,, [that is, Tr(A*A4)"1/2<w]

det (1 +A4) =det [(1 +4) exp("z (—‘kl"fAk)] @
k=1

If A is a (bounded) linear operator on a Hilbert space
H, we denote by A™(A) the operator induced by A on
A™(#), the m-fold antisymmetric tensor product of 4.

Our main result is
Theovem 2.1:

1
1+ 2K

u= IIA"‘( det (1 + )Ly,

X exp ((sz 1 p3(x) :gz(x)dzx) € 1‘r;mL"(duO)

for all M c R, Ac R (det!) denotes the renormalized
determinant defined in Ref. 1 with the finite mass re-
normalization parameter M? appearing there put equal
to 0).

From Theorem 2.1 we get immediately

Corollary 2,2: The finite volume Schwinger functions
exist and fulfill

|S!(”)(h1’ ceey hn; fl: s '!fm;gl! LI -sgm)I
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n m
< explne, +mey) Cn+3)/210 Wkl T (£l *llggll,q*
r=l i=1

(2.2)
where the constants ¢, ¢;, c; may depend on g and M,

Pyoof of the Corollary: By the Matthews—Salam formula
[cf. (4.15) of Ref. 1] the left-hand side of (2.1) is

| 1 1 AL
l (7pz+m2f1/\---/\ 7p2+mzfm’ <1+m)

Se8L A A SpEw)andy) Hl ¢(h,)

7=

det{D(1 + AK) exp[M? [ : ¢?: (x)g%(x) dPx]duy(o) ‘

< ful i 6| Iilyallzsly (2.3)

To prove the theorem we have to split the operator K
into two parts:

K=S,.I'¢g=L,+H, (2.4)
where
Le=Sp L8, (2.5)
1 yt+tm .
Sp = xp(ipx) d*p. 2.6
Fot = [3n)2 Iylstpz+m2e p(ipx) d?p (2.6)

The crucial estimate to separate the contributions from
L, and H, is contained in the following:

Lemma 2.3: Let LeC,, He(,. Then

m_ 1
T+L+H

F
<det(,(1+0y,) exp[8IILIl, - 3Tr(H*H)?- 2Re TrH?H*]
X exp(3m/2), 2.7

det{(1+ L +H) exp[- (L +H) +H?/2]

where Oy =H + H* + H*H and Oy, its nonnegative part.
The proof is given in Sec. 3.

Covollary 2. 4:

u<dety,(1+ o,,,:,)1 /2

At 2
X exp [— vy Tr(HfH,)? - X* Re TrH} exp (— %Tr,,s :HE ):,
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X exp (4>\|IL¢II1 +~7§(Tr L% exp|M? f: d3(x) : 2x) dzx]> .

(2.8)

where Tr,,, : He : is defined as in Ref. 1, that is, with
subtraction of the full formal counterterm [d%/(p?+ m?);
hence

Trreg: K2 :=Trpp:Hi: +2Tr :HLy: +Tr: L, (2.9)

reg reg :

Next we deal with the low momentum part:

Lemma 2, 5:

exp(AMIL e n LAdupy).

15pqw

Proof: (a) Lyc(, because it can be factored into two
Hilbert—Schmidt operator. Let 6, be the projection onto
momenta |pi < ¢;x a function which is 1 on supp g and

fulfills
TP 1x@) 2% < =, (2.10)
1
A:p +m 9¢x(p2+mz), (2. 11)
S S (2.12)
prEmeE :
Then L,=A.B,
B*B:—z——-—ml by g7z (2.14)
OF+me)ETE PR mY)R e )
(recall that we are working in // =#, ;, ®H; ,,).
Then it is easy to see that
TrA*A <K<« (K independent of ¢), (2. 15)
TrB*B= (¢, Co),, {2.16)
where C is trace class in 4, (actually
CogrygE (.17
7w 4Es), :

where E is a multiplication operator in momentum
space:

E(k fdp[(p +k/2)2+m21172[(p k/Z 2+m2]3/2

(2.18)
By using the numerical inequality
x<3(1/6+06x%) (xeR, 6>0), (2.19)
we obtain
exp(4rl|Lll,) < exp(4AllAll,]|Bll,) < exp[2AllAll,(1/0
+8(¢p, Cop))]. (2. 20)

The right-hand side is in L? for small enough §.

The high momentum part is estimated essentially as
in Ref. 1. But there is a modification because our es-
timate (2.7) involves det,(1+0y,) instead of det,(1
+0,.). If we estimate
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)\4
we(p) =detz,(1+ 05,0 2exp (— vy Tr(H:H¢)2>

X exp(7® Re TrH:H}) (2.21)

by introducing a cutoff « in ¢ and consider

Inwe(¢) = Inwe(p,), (2.22)

we get, using Lemmas 3.1, 3.2 of Ref. 1,

Inuwe (¢) ~ Inewe(9,)

2
< 2 (TR OMHe(0)) - Tr(B7 (6 )He(0,)7]

+ N[ TrH (¢)?HE(¢) - TrH, (¢ ) °HE(6,)]
3
+ 11040, = Oy o, lla kL_g CollHe(H) BN H (S I3

+§Tr(0§;;(o>-' O?I:(‘DK)-); (2.23)

The only new term is the last one. We have to show that

J ITr(O?,:(o)_— 0?{:(%)_)|2du0:o(,<-5). (2.24)

This follows from the following two lemmas.
Lemma 2.6: Let A, Be(, be self-adjoint. Then
| Tr(a- BY)| <114 - Bl (1418 /4
+11Allg /5l Bllg 5 +1BIIZ 5).

Proof: Denote by A, u; the eigenvalues of A,, B,, re-
spectively (ordered decreasingly):

| Tr(A3 - BY =] 250y = n) (8 +a, + ud) [ < 52, = |91 4

X LG+ Mty + p) 0P/
< |lA - BlIg(IAlIZ 5 + lAllg 5l Bllg /5 + 1 BIE 1)
by Lemma 3.2 of Ref. 1.

We next require a general interpolation theorem for
the spaces C ,; explicitly, the following three-lines
theorem:

Proposition: Let K, be an analytic operator-valued
function in the strip S={z € €la <Rez <b}, weakly con-
tinuous on the closure of S with (¢, K, ) bounded for a
dense set of ¢ and . Suppose that K,Mch # for all real
¥, KyuiyeCyy for all real y with a = sup,liK,, ;,ll,, <= and
B=sup,liK,.;ll,, <. Then for any z€ S, K,C,, with
Ik, i, <¢Inf + (1-#) Ina where t= (Rez - a)b —a and
PP =t + (1= t)pi.

Interpolation theorems fall into three closely related
types: three line lemmas, Riesz—Thorin theorems, and
Stein theorems. Kunze® proved a general Riesz—Thorin
theorem for C, spaces and Calderon’ made a general an-
alysis of interpolation spaces. By combining these
works, one gets the Proposition above (see, e.g.,

Reed and Simon®?, Appendix to Sec. IX.4). The proposi-
tion has been independently discovered by Gohberg,
Krein, and Krein and the reader can find a self-contained
proof on pp. 137-139 of Ref. 9.
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Lemma 2.7: For every € >0, K, Hg, O,, O”r are in
Coe a.e.

Proof: We give the proof for K; for the other cases,
the proof is analogous. We apply the proposition with

+
V4 }"Kz:(ppz_*_::Z)z ¢g (2. 25)
on the strip
S={ze@:3+6<sRez<1+8} (0<d<}). (2.26)

Since it is easy to see that K,c(, a.e. for Rez=% +6
and K, c(, a.e. for Rez=1+5 it follows that K=K,
ECZ/(!-ZG) a.e. and

InlKIly /125, < 46 Il Ky y0slly + (1 ~ 48) IniKy sl
(2.27

Lemma 2.6 and 2.7 allow to estimate the non-Gaussian
part of we(¢) in the same way as this is done in Ref. 1
(essentially Nelson’s argument). The Gaussian parts
coming from H, are as in Ref. 1
AZ
Up = €Xp (7 Tre,: H?‘H:;) .

Lemma 2.8:

o= exp (5 Tryug: B = exp - (02/2)(9, Beo),) (2,29

where B, is a positive Hilbert—Schmidt operator on Ha
and

Be> iy in(1 + £/mig? (2.29)
Proof:
H!:(SF"‘SF,!)¢3, (2-30)
1
Be=irr 280t (2.31)

Go=- [ap (2828 L 1 \(32
¢ Gi+m?) =PI+ m ) pt A m® ) T
(p.=p+k/2). Using ab < 3a®+b?) we get
1 o/ 1 80~ A\ .1 1
szfdp(m-m e dzﬁ(m

1 1 1 2 /.2
_W>—2[pl‘tdzpm—"ln(l+g/m )- (2.33)

(The last equality follows because
1 1 1

2 — 2

_[dp(p2+n?z-p_+m ) = fdp((p TR/ mE
1
- AT
Pp~-k/A+m )
=0 by symmetry.)

Now it is clear that we only have to choose ¢ such that

722 1n(1 + £22/m?) = M? (2.34)
to make u, - exp(M?[ : ¢ : g2dx) € Nyepcwl?. This com-
pletes the proof of Theorem 2. 1.
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3. DETERMINANT INEQUALITIES

In this section we make use of ideas of Lieb'’ and
Kato (private communication) in order to prove the cru-
cial lemma 2. 3.

Lemma 3.1: Let A, B be linear operators from a M-
dimensional (real or complex) Hilbert space //,, to N-
dimensional Hilbert space /. Then
IIA™(1/A*B) det(A*B)I?

< ||A™(1/A*A) det(A*A)IIA™(1/B*B) det(B*B)l|. (3.1)

Remark: Note that A™(A™) detA is a polynomial in the
matrix elements of 4, so (3.1) makes sense (and is true)
also for singular A or B.

Proof: We use the polar decompositions
A=U|A|, B=V|B| where |A| =(4*A)! /2
B=(B*B)!/%
U, V are partial isometries. Then A*B=|A|C|B| where
C=U*V is a contraction in #/,. The left-hand side of
(3.1) is then bounded by
1A™(1/]A]) det|A[I%1A™(1/| B|) det| B 1
X||A™(1/C) detC|? (3.2)

and the last factor is <1 as can be seen by replacing C
by IC| (unitaries do not matter); then IA™(1/1C{)
XdetlClI is the product of the m largest eigenvalues of
|Cl. The first two factors in (3. 2) give the right-hand
side of (3.1).

Lemma 3.2: Let A, B, (i=1,...,n) be linear opera-
tors from #/, to /. Then
IA™(1/23,AFB,) det2) ,Af Bl

<A™/ 25,A¥A,) det?  A¥ANIIA™(1/ 25 Bt B))

Xdet?,BEB, || (3.3)

Proof: This is a special case of Lemma 3.1 (4,
:®:=17l7l W

Remark: Lemma 3.2 has been brought to our attention
by Lieb who first proved it for the special case m =0 and
then proved a general result'® from which (3. 3) follows
easily. The idea of the proof given here (the reduction
to Lemma 3, 1) is due to Kato (private communication).

Lemma 3. 3: Let A, B be trace class operators on a
Hilbert space //. Then

"A’" (ﬁ) det(1+A+ B)"z
s”A"‘ (Ti:A—L-ﬁ;I)det(h +A| +|B|)u

m 1 ]
x"A (|1+AI+W|B|WPI)det(|l+A|+W|B|W1)u

(3.9

with a unitary W. (For m =1 this result also can be
found in Lieb.'?)
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Proof: If # has finite dimension, this is a special case
of Lemma 3.2 with A, =By =1, A,=UIA|*/%, B,=|A|'/?
A,=VIBI'2 B,=|BI*2 (A=UlAl, B=VIB|, W=U*V).
The infinite-dimensional case follows from an easy lim-
iting argument (see Appendix, Proposition 2).

Lemma 3.4: f 0<A<1isa(,, operator on# (i.e.,
TrlA|™ <o), thenA™[1/(1- A)]det, (1 - A)il

<explm(1+3+---+1/n)). (3.5)

Proof: f ay> a,>---2 0 are the eigenvalues of A, the

left-hand side is

I (1- o) expla; +a;/2+...+a}/m) NIl
i1 jem 1=y

< I exp(a; +o2/2+ ...+ al/n)
ism

<explm(1+1/2+-+-+1/n)].

Lemma 3.5 (= Lemma 2.3): For Ae(,;, Be(,
I m 1 2
<det,(1+0,,) exp(6llBlly + $m - [|All} - 2Re TrA%A*
(3.6)
where O,,=(A +A* + A*A4),.

Pyoof: 1t is sufficient to give the proof for 4, Be(,
(see Appendix, Proposition 4). By Lemma 3.3 it suf-
fices to estimate

1+C +|B| @.7

X:IIA"‘( 1 ) det(1+C + |B)|
where C=i14+A4|-1=C,=-C_(=0<C_<1). With

1 1 _ 1 1
JT+C, ‘B|\/1+c+’ =77 7T

we have (since C,C_=C_C,=0)

D=

E

Xsdet(1+C+)I|A"‘< 1

m)det(l +D~ C_)“

<det(1 +C,) det(1 + D),

IIA"‘(————l IE) det(1 - E)ll <det(1 +C,)det(1 +D)

X exp(3m) exp(~ TrE - TrE?/2) (3.8)
by Lemma 3.4,

Now
TrE=Tr(1+D)*C_> Tr(1-D)C_> TrC_~TrDI|IC.|

>TrC_-~Tr|B]|,

TrE:=Tr {1 Dca
re=Ar -1/~

D D 2
= 2_ 2 4
TrC2 ZTW C:+Tr (1+DC->

(3.9

2 TrC%— 2TrD> TrC%~ 2Tr|B|. (3.10)
Because of 1+0,,=11+A12P,+(1-P,)=(1+C)*P,
+(1~P,)=(1+C,)? (where P, is the projection associat-
ed with C,) we get
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X <det(1 +0,4,)! 2det(1 + | B|) exp(2 Tr | B| + 3m/2)

X exp(— TrC, - TrC?/2) =det (1 + 04,0 /2 det(1 + | B|)
X exp(2 Tr|B| +3m/2)

Xexp(— TrC. - 3TrC%+3Tr0,, - s Tr0%.) (3.11)
We claim
TrC_+3TrC%=3Tr0, +4Tr0%.. (3.12)

Proof: Since (1-C)>=1-0,_,

Tr(C_+4CH=Tr(1-v1-0,)+3Tr(1-v1-0, )%

=2Tr(1-v1iI=0,.)— $ TrO,_ = :TrO,_ +5;Tr0%.
(WV1-x<1l-x/2-x%*/8 for 0=x=<1).

Therefore,

X < det,(1+ 0402 exp(3I Blly + $m)

X(3TrO, ~sTr0%). (3.13)
The lemma now follows from
3TrO, — 1Tr0% - Re TrA +$Re TrA?

=~ ¢llAll} - Re TrA%A*, (3.14)
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subject which also proves Theorem 2. 1; the method
used there, an expansion of the low momentum inter-
action, is quite different.

APPENDIX: CONTINUITY OF CERTAIN
OPERATOR FUNCTIONS

Proposilion 1: For Ac(C,

nA'"(—-——1 ) det(1 +A)Il < exp(llAll, +m). (A1)

1+A
(This estimate is not best possible: The factor e¢™ can
be eliminated. )

Proof:

IA™ (—-1 iA> det(1 +A)||

=g e Aew A g Al AT

xdet(1 +A)| (A2)
where the sup is over orthonormal systems of vectors
e, f, i=1,...,m). If we denote by C, the operator
which maps v e/ into e,(f,, w) (k=1,...,m), then
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1
e Ao ey AM(_I.+_A>f1/\...Afm det(1 +A)

m

Y det (1 +A+7; >tkclz>

“a)\l... e}

m m
=(-L i§1¢ @z-mdet(1+A+Z; )\,,C,;(A3)
2mi Iy l=1 A o A =Y
Using the well-known ineq"{.lality

|det(1 + B) | < exp(l|Bll,) (A4)

we obtain(A1).
Proposition 2: For A, Be(,

HA’"(T%_I) det(1 +A) - A”‘(

1
T +B> det(1 + B)|

<||A - Bll, exp(llAl}, + |IBily + m +1). (A5)

Proof: Without loss of generality we can assume A # B,

Consider then

1
YN (. SE— +A+¢HB-
F{=A (1+A+t(B-A)> det(1+A+1(B=A)). (A6)
The left-hand side of (A5) is bounded by
RIF' @ dt< sup IIF' DI, (A7)
tclo,1]
By Cauchy’s formula we have
' 1 dt 1 dt
|\F t)ll=l|—-—.¢ Ft+T)H$—¢ LF( + 7).
( 2mi a7 ( 21| T (
(A8)

Choosing [7|=¢= (1A - Bil;)-! and using proposition 1,
we obtain

1F(t+ ) < explll(1 = YA +tB + 7(B = A)ll, + m]

< exp(llAlly +|IBlly +m +1) (A9)
and, therefore,
IE'@®) < 1A = Blly exp(llAll, + IBlly +m +1) (A10)
which proves the assertion by (A6),
Proposition 3: The function
Rn ZC,, "C[
m=l (L AP
AFRA)=(1+A)exp -2, — -1 (A11)
=1

is continuous.
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Pyoof: R,(A)=A"G(A) where G is an entire function.
Therefore

IR, (4) = R (B)ll; < |A" - B"ll, IG(A) ] + 18"l 11G(A) - G(B)I.
(A12)

Repeated use of Holder’s inequality for operators gives

n=1
A" = B'lly < [l4 - Bll, 2 IAIGIBIT-.

(A13)
=0
Pyoposilion 4. The function
L7:C,~[(A™) (bounded operators on A"4),
- mf_1
ARLMA)Y=A <m> det,.1,(1+A4)
is continuous.
m m <. (_ A)k
Proof: L™(A) =A (epo - )
k=1
1
m P + .
A (1 T A)> det(1 + R, (4)) (A14)

The first factor is obviously continuous; Proposition 5
then follows from Proposition 3 and Proposition 4.

Remark: For special cases (m =0 or 1) most results
of this appendix can be found in Refs. 9 and 12.
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We have obtained several theorems exhibiting relations between the asymptotic behavior of the average
multiplicity {n) and the distribution of zeros of a generating function for multiparticle production cross

sections.

As is well known there is a close analogy between the
multiplicity distribution at high energies of multiparticle
production processes and the statistical mechanics of
a one-dimensional gas.' The analog of the grand parti-
tion function in statistical mechanics is the multiparticle
generating function®? such as

N(s)

Uz, y)= nZ\’z o,(s)z", (1

where z is the analog of fugacity, y=Ins (s being the
square of ¢c. m. energy) is the maximum rapidity avail-
able in the collision, and N(s) is the largest integer not
exceeding Vs/m (all particles are assumed to have the
same mass m for simplicity). One may then define an
analog of thermodynamical quantities such as “pressure”
p and “density” p:

p(z):liml InQ(z, y),

PEX

o1
p(z)=1im z — 3 InQ(z, y),

yon 0Z

v playing the role of volume in statistical mechanics.

When generating functions are constructed based on
some specific models, their characteristics might re-
veal themselves through these thermodynamical quan-
tities. In fact, some dynamical models, such as the dual
model and the multiperipheral-type models,® have been
used recently to study their high energy behavior and
the problem of “critical phenomena” in hadron—hadron
collisions.*

Cne of the effective approaches to the problem of
phase transition is to study the distribution of zeros
of the grand partition function.® Phase transition takes
place if zeros close in onto the real fugacity axis as the
volume V tends to «. Analogously one may ask whether
the knowledge of the distribution and energy dependence
of zeros of a multiparticle generating function provides
information on the asymptotic behavior of experimental-
ly observed quantities.

In this article we report some results of our study
concerning the relation between the asymptotic behavior
of the average multiplicity (%) and the distribution of
zeros around the unit circle | z] =1 of a generating func-
tion for multiparticle production defined by
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F(=F 2 a(s)e. (3)
Here a,(s)=1, a,(s)=0, and

()= s o (9 3 o) @)

'S T O (8)’ n=e, Oyt\S/= -t a\ St

The quantities (), (n(n-1)), etc. are related to F (z) by
d
)y = 2d—£ FS(Z)‘F!’

(n(n-l))zzd—dz— Fs(z)~ , etc. (5)
V4 z=1

Thus they will be influenced by some local properties of
F(z) near z=1, such as the distribution of its zeros.
The question is: To what extent and how? In order to
avoid unnecessary complications, we shall assume that
{ny, (n{n-1)), -+, are continuous, monotonically in-
creasing functions of s. Most of our results will hold
with slight modifications if we weaken this assumption.
For instance, (), (n{n—-1)}, +--, may have some oscil-
lating s dependence.

We have chosen to study F(z) instead of Q(z,y)
=0,,,(s)(2F(2) - 1) because of simpler mathematical
property. Of course, the zeros of F (z) and Q(z,y) do
not coincide, although most zeros of £(z,y) will be close
to those of F (2). [A notable exception is the double
zero of Q(z,y) at z=0.] If we define the “pressure” p’
and “density” p’ for F(z) by

p'(z)=1lim % InF (z),

e (6)
p'(z)=1lim z—a— llnF (2)
A gm w 2 v L] ]
we find
p'(z)l =%p(z)[ . (7)
z=1 z=1

We are now ready to examine the properties of F(z).
By definition F_(2) is a polynomial and hence is regular
for all z. Unitarity (in the weakest sense) requires that

0<a,ls) =1, (8)
We also have

N(s)

E [l"(s) — 1 (9)

n=2
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from (4). Thus | F(z)! is uniformly bounded by 1 for
lzl <1.

If F(2) is uniformly bounded in a larger circle | zl
<., v,> 1, dF(2)/dz is also bounded for |z-1l<v -1.
Then, in the limit s —~«, the density p’(z) of (6) vanishes
there and no “phase transition” occurs at z=1. Since
we have nothing more to say about it, we shall consider
in the following only the case where lim_, , F,(2) is
singular at z=1, or more specifically the case where
(m)(=2 dF /dz|,.,) diverges for s =,

As is readily seen from (8) and (9), F,(2) is free from
zero for |zl <1 and is positive on the positive real axis.
Thus all zeros z,(s), i=1,2, *++, of F (z) must satisfy

| 2(5)] > 1. (10)

If a,(s) are continuous functions of s, which we may as-
sume without loss of generality, the zeros z,(s) are also
continuous functions of s. [Note that if zi(s) is a complex
zero of Fy(z) so is z}(s). F,(z) may also have negative
real zeros, which we shall not write explicitly. ]

For our following considerations it is crucial to have
some knowledge of the large s behavior of F(z). We
know from (3) already that F, is bounded for large s as

| F(2)| <3R™

for any |z <R, R>1. In order to have a closer control
of the asymptotic behavior of F(z), however, let us in-
troduce g(s,R) by | F (k)| = R¢‘*®  This function is not
necessarily monotonic in s. For any fixed R>1, how-
ever, we can construct a positive monotonically in-
creasing function i(s, R) by

h{s,R)=maxg(s’,R),

st =g

which satisfies

n{s, k) < N(s). (11)

From now on we shall regard R as large (> 1) but fixed,
and denote k(s,R) simply as i(s). Then, because of the
positivity (8),

|Fy(2)| <R, s>s,>4m?, (12)

holds not only for z=R but also for all |z] <R.
An immediate consequence of (12) is the inequality

a,(s) < 2RI, (13)

which is a stronger constraint than (8) for n> k(s).

Unlike a,(s) and {n) it is difficult to associate k(s) with
directly observable quantities. As is shown in the fol-
lowing, however, h(s) is closely related to the number
and distribution of zeros of F.(z) near | z| =1 under
certain circumstances.

Let us begin by noting that k(s) gives an upper bound
for the number Ny(s) of zeros of F (z)in |21 <1+35, &
> 0. In fact, applying Jensen’s theorem® to the circle
|zl <R, and taking account of (12) and F (0)=1/2, we
obtain

1

m [A(s)InR + In2].

Since F (z) has no zeros in |z| <1, this also gives an

Ny(s)=<
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upper bound for the number of zeros in 1 <]z} <1+6.

It is not so straightforward, however, to find a useful
lower bound for Ny(s). Let us derive it in several steps,
exhibiting additional assumptions clearly where needed.

(i) Suppose {n) — = for s ~ . Then, for any given &
>0, the number of a,(s) satisfying

aﬂ(s)z—ﬂ(—S)—

d+op Lale)=1]

(14)

increases without bound as s — «. In fact, if a,(s) <a,(1
+ 8)™ holds for all n> n,, n, being independent of s, we
find

N
S na,
n=ng+l

1+n0
< —0 <
"ot BT o

)
(=22 na,+
n=0

(15)

which contradicts our assumption.

(ii) Let X =K(s,d) be the largest n satisfying (14) for
given s and 6. Then, for very large s, we obtain

(m<Ks< [#(s)InR + In2]. (16)

1
In(R/1 + 8)

The upper bound is trivially satisfied if K <h(s). For X
> h(s), it follows readily from

ao(l + 8K < ay< 2Rh(SI-K

To obtain the lower bound, note that

an(s)< nzK+1,

%

(1 + 5)11 ’

Thus, replacing »n, in (15) by K, we have
() <K+ (1+K6)/[6%(1 + 8)¥].

Obviously K must increase indefinitely as (#) = . In
particular, for sufficiently large s [such that K (c/
5)1In(1/6), ¢ > 2, holds], we find (0} <K.

(iii) Next, consider the partial sum
K
Sel2)=2 a,(s)2", (1
n=0

whose zeros we denote as y,,y,, . .
get

.yVg. From (14) we

| 9a3z = * * 9| =@/ ax < (1+ )%

Let yx.p+1s - - -, ¢ be the zeros for which 1y,| >1+¢, ¢
> 0. Then, noting that |y;1 >1 for all {, we obtain

1+e°< Iyx-pﬂ“"yxl <z oo yg] <(1+06)F,

and hence

P < In(1 + 5)
K 1In(1+¢)

0
e
Thus one can make p/K arbitrarily small by choosing
first ¢ and then 6. Recalling that K =K(s, ), one can
therefore find, for very large s, positive constants 6,7
such that the number of zeros of S,(z) in |zl <1+ 6 is
greater than K(1 - 7).

(iv) By an adaptation of Jentsch’s theorem,’ it is easy
to show that every point of the circle |zl =1 has a
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neighborhood in which a zero of SK(z) is found for suf-
ficiently large s. It can be shown further that the dis-
tribution of these zeros is nearly unform in #=argz. To
be more precise, let ¥(B, AB) be the number of zeros of
Sk(2) in the sector B<arg z< B+ AB. Then we have®

A X 1/2
[ (8, AB) "2“5* K|< 16[Kln<z_)0 |ai|/WK)] .(18)

The steps (iii) and (iv) have been introduced in the
hope that the distribution of zeros of F(z) may be in-
ferred from that of S,(z). This will be the case if the
remainder Ry(z)=2F(z) - S,(z) satisfies the inequality

| Ri(2)] < |Se(2)] (19)

on a small closed contour surrounding a zero of S,(z).
By Rouché’s theorem® F,(z) will then have a zero within
the same contour. Of course, (19) will not be valid un-
less R,(z) is sufficiently constrained. As is shown be-
low, the assumption

(20)

ay
a, < n-K »
"1+ a)

n:K+1,K+2, peey
which is perhaps the simplest of its kind, does indeed
provide such a constraint on R,(z), where K is defined
in the step (ii) and @ is an s-independent positive num-
ber. Since this is one of our main results, let us formu-
late it as

Theovem 1: Suppose {n) — « for s — =, Suppose also
that @, decreases exponentially for very large » accord-
ing to (20). Then F(z) has a large number (at least of
order ()} of zeros lying in the ring 1< |z| <14 8, where
& can be chosen arbitrarily small as s =~ «, Further-
more, every point, with possibly a few exceptions, of
the circle | zI =1 has a neighborhood in which a zero of
F,(2) is found for sufficiently large s.

Proof: Let us assume for simplicity that all zeros of
Sk(z) are simple. According to (18), for any fixed AS
(>> V&) such that 27/AB is an integer, v(B, Af) has a
minimum when B goes over a set of discrete values
separated by AB. Let this minimum be (Ag/27) (K
— AK). Let A be the set consisting of the (AB/27)(K - AK)
zeros of smallest moduli in each sector, and B be the
set of remaining zeros. More precisely, let 4 (8, Ap)
and v?(B, AB) be the number of zeros of the sets A and
B, respectively, in the sector B<arg z< 8+ AB. Then

A(B, AB) :%(K - AK) independent of 8, (21a)

vB(8, AB) = v(B, AB) - vA(B, AB) = O(AK), (21b)

where AK =v5(B8,27), the total number of zeros belong-
ing to the set B, is subject to the constraint

AK < 16K(5/2)*/2
according to (18).

Let y,=p, exp(i6,) be a zero belonging to the set A.
Then, making use of the inequality

2
| aexp(i6) - b exp(z'¢>|2=ab(| exp(if) _exp(i¢)|2+——(“a; b)>

= ab|exp(if) - exp(i¢)|?, (a,b>0),

we obtain
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’ _..__1 I1 _2
lsK(y‘.)l_lyd i 1 yjl

1
131

=

(ay |y, [/ S | expl(i6,)
Eh

- exp(i6,)| L |exp(i6,) — exp(i6,)], (22)
where we may assume that y, is located in the center of
one sector and that the factor lexp(i6,) —exp(iGj)l is re-
placed by the exact expression (| exp(i6,) — exp(i6,)1?
+{p, —p,-)z/p,-Pj)”2 whenever y,, j€A U B, belongs to the
same sector as y,. From this construction and (21a) we
find

M [exp(i6,) - exp(i§)| = O(K).

#i

ica

(23a)

Note that, if each sector contains one zero in its center,
the right-hand side of (23a) is exactly equal to K - AK.

It is more difficult to estimate the last factor of (22).
If we average it geometrically over all y,, i€ A, how-
ever, we obtain

1/(K-AK)
( I 11 |exp(i6,) —exp(iOk)|> =0(1).
i€A REB
Of course, I1,c5lexp(i6,) ~exp(i6,)] itself can be much
smaller than this average for some y,. However,

Il \yi - yk| = O(l) (23b)
k& B

will hold for the majority of y, (i €A), the only excep-
tions being those that happen to be very close to a clus-
ter of zeros of the set B. If we exclude such zeros, we
obtain from (22) and (23) that

[Sky)| = cK |y, | Hay|y |72
where ¢ = O(1).

Now, since the average separation of zeros is at least
27/K, one can find a radius 7, [= O(K™")] such that Sy(z)/
(z - ;) is zero-free in the circle C;: | z—y,| <7;. The
integral

rs( ) 2
A YTV

is then univalent in | 2! <1 and S,(z) satisfies the bound!®
|Sk(2)| > o(1 = 0)(1 + 0) 27, | Sk (,)]
on the circle C; ,: | z- ;| =07;, 0<0c<1. On the other
hand, we obtain from (20)
|R (2| <1+ a—|z])ay] 2| ¥

Thus, for most y, satisfying {y,! <1+ 8, the inequality
(19) holds on C;,, if we choose

o7, <((1+8)]y, | )/2 = |,].

By Rouché’s theorem F (z)=3[S,(2) + Ry(z)] must there-
fore have a zero in C, ,. QED

Remarks: (1) With minor modifications the above
proof applies also to nonsimple zeros. (2) Theorem 1
will not be valid if the assumption (20) is weakened too
much. A counterexample is provided by the function'!
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1 12‘5 l
il il ~En ~“n
2+2n=2n z"/(gn ), €>0,

which satisfies all requirements for F(z) except (20).

Formula (16) (see also Appendix, Lemma 2) shows
that (») is bounded from above by %(s). To see the rela-
tion of k(s) and {(n) more closely, let us write F (2) as

_nlz=zi)z-2})

Fs(Z)'—I}(l _ Z‘)(l _ Z,r),
where the product is over all zeros z;= zi(s) with Imz;
> 0. Differentiating InF (z) and setting z=1, we obtain

(n) =2F;(1):2.5T“, 2—(|1T‘_R—:|5;~)—. (24)
i

According to Theorem 1 the total number of zeros of

F(2) in the ring 1< |z} <1+ 6 is greater than K(1 - 7°)

where 7/(> 1) is a small positive constant. Most of these

zeros lie also in the circle Z;: (Rez+ 6)*+ (Imz)*=(1

+6)%, and hence satisfy

1__2(1 —Rez)
1+6  11-g,l°

<1,
Let the number of these zeros be K(1 —9’)(1 - £), £ being
a small positive constant. Then (24) may be written as
(=K1 -7')(1 - (1 - 0(6))

+ Z; 4(1 —RezL) 4 2

2
Res;<1 11—zl Ree;>1 i1 -z
outsideZ g

4 ‘R"i?’) . (25)

The contributions from the first and second terms are
positive whereas that of the last term is negative. Thus,
if the last term is finite for s — «, we may conclude
from (16) and (25) that (%) K for very large s. Unfor-
tunately, there is no guarantee that this is the case. In
fact, a zero in the Re z> 1 region, if it lies at a dis-
tance ~2/(eh(s)) from z=1, may give a negative con-
tribution as large as —k(s). [No zero exists in |z~ 1|
< 2/(eh(s)) according to Lemma 1.] Just a few such
zeros are sufficient to render the right-hand side of
(25) much smaller than K.

To see how close to z=1 a zero of F (z) can be, let
us assume that F (z) has no zero in |z—1|<y, » being
independent of s, and that (») behaves as

(my=C[nr(s)]*, O<a<l, (26)

where the constant C may be replaced by a very slowly
varying function of s. Then it follows from (26) and
(A15) of Lemma 3 that

r< gz ()=, (@7

where << 1 is assumed. For a > 3 this is in contradic-
tion with the s-independence of ». In other words, when
z<a<1, F./(z) must have at least one pair of zeros in
the circle
64

|z-1]< = [r(s)]t2= (28)
whose radius tends to zero for s = «. Furthermore,
some of these zeros must be in the region Rez>1 if
() < K is to hold.

In the particular case where zeros of F,(z) are re-
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stricted to the region Rez<1, or more precisely to the
region satisfying

Rez<1-¢|l-2z|?, (29)

€ being a small positive constant, it is possible to draw
a much stronger conclusion:

Theorem 2: Suppose all zeros of F (z) lie in the re-
gion defined by (29). Suppose further that (»n) satisfies
(26) with @ restricted to < @ <1. Then the multiplicity
distribution a,(s), n=2,3, *=°, is peaked at n=(n) in
the sense that (n®/my?=1+ 0(m)™), W%/ {(W*=1+ 0(n)
+ O({m™1).

Proof: The function

= (1-2)1-2F) ~
F(z)=1"—=7——F F (1)=1 30
(D= TG AT B [R)=1] (30)
is zero-free in | z - 1| <7, if the product I, is over all
zeros of F(z) in |z~ 1| < with Imgz, > 0. Taking the
logarithms of both sides, differentiating them » times
with respect to z, and setting z=1, we obtain

. _ 15, 1 1
Fo=e o+ D (G ) S
where
1 4 s
cn(s)'-‘n—! oy 1111"“S(Z)|z=l
1 4 32)
5"(8):;!_ g InF(z) ’z:lh

In particular, we need an explicit form of (31) for n=3:
F,® _3F"F'+2(F/)

=F ™ _3F"F'+2(F/f+

L (1 -Rez,)[(Img;)? - (1 —Rez,)?] (33)
i 1=z1° ’

where F,” F (" are the values of F,"(z), F ™ (z) at
z=1. Since all zeros are in the region satisfying (29),
we obtain

(1 -Rez,)[(Imz,)? - (1 ~Rez)?]
0<4.2," o i ird 40-2
Z 1-2,1° o([n(s)1'**)
(34)

from (28). On the other hand, we have from Lemma 4
IF"'S(S) _3F'SIIFS/+2(F' I)SI —:O(Z(S)), (35)

which is smaller than (34) for a> 3. Thus F,® -3F "F,’
+2(F,’)® must be negative and of order [h(s)]**= in
magnitude in (33). Rewriting it in the form

D nPa, - Qinta,)?/ (Pina,)]
+[2n%a, - $Qina N2 0nPa, - (Cina,)?)/ (2ina,)

- %Z}nza"+ %(Enan)2+ Ena", (36)

we see that it can take negative values if and only if
Zna,= Cina,y + O(Zna,)), (37
2inta,=ina Y+ 0(2ina,), (38)

where (38) actually follows from (37) and Schwarz’s in-
equality. This result may be rewritten in a more trans-
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parent form:
W) ~m? (1
o O<<n>>’

which proves the theorem.

o)

Actually Theorem 2 will hold even if some zeros are
in the region Rez™> 1 insofar as they do not upset the
relation (34).

(39)

Note also that the distribution of zeros obtained in
Theorem 2 is qualitatively not dissimilar to that of the
extreme model

.
F(2)=5+32'9, ie., afs)= {1 if n=hz),

0 otherwise,

(40)

whose zeros z, =exp(imk/h(s)], k=1,3,5, °> -, are uni-
formly distributed on the unit circle | z| =1. This model
gives ¢,(s)=h(s)/2, c,(s}=h(s)h(s) -2)/8, c,(s)=

- his)h(s) - £)/8, etc.

Let us conclude this report with a few general
remarks:

(a) In this article we have examined the relation
between the asymptotic behavior of (n), (n(n—-1)), <>,
and the distribution of zeros of F (z). We have found,
under certain restrictions, that F_(z) has a large num-
ber of zeros accumulating on nearly every point of the
circle |z =1 if the average multiplicity (») is divergent
for s — . Such an accumulation will lead to the discon-
tinuity of the “density” p’(2) at z=1if ()= Clns, a
situation quite similar to that encountered in statistical
mechanics of the lattice gas. We note that one finds ()
2z Clins, where C is a positive constant independent of s,
in a planar dual model’? as well as the scaling theory of
Koba, Nielsen, and Olsen."

(b) Information on the asymptotic behavior of the
second moment f,(s) = n(n - 1)) — (n)® would be very use-
ful in constructing models of multiparticle production
processes. If f,(s) is nonzero, one can infer the presence
of long range correlations in hadron—hadron collisions,
.while the sign of f,(s) is crucial in characterizing more
salient features of the models. In principle one should be
able to obtain the properties of f,(s) knowing that of (x),
{n{n-1)), etc. We have thus far been unable, however,
to correlate the magnitude and sign of f,(s) with the
position and number of zeros of Fs(z) near |zl =1. [In
the example (40) we have f,(s) =~ h(s). ]

(¢) Equation (39) has some similarity with the KNO
scaling, ' which implies (#%/{n)¢=C, + O(1/Ins), C,
being a constant independent of s. The underlying as-
sumptions of this scaling law are: (i) The scaling
functions

1 do
f(Q)(xuplu ..

Opot Apy/ w0y ** *dp /@,

. ’xq’plq):

are nonsingular at x;=--°=x,=0. (ii) For large s the
function 9 approaches a constant limit rapidly and
does not even have variations of the form Clns. Our
result (39) appears to imply that some consequences of
the KNO scaling may be valid under less specific as-~
sumptions than those of Ref. 13.

(d) Recent experiments indicate that the s dependence
of {(n) is somewhere between Ins and s'/%. If {(n)=
=0(s*/*¢), ¢> 0, a>3 holds in (26) and F(z) will have
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zeros tending to z=1. We note that some recent
theories based on Landau’s hydrodynamical model
predict {(m)~s'/*.

(e) Recently Khuri'® has obtained bounds on {(»} and
(n*), p fixed and finite, under the following assumptions:
(1) The cross sections ¢,(s) have convergent power
series expansions in some coupling constant A. (2) o,
are polynomially bounded in s for all complex values of
X within a circle of convergence. (3) The Jin—Martin
lower bound is satisfied for all physical values of A.

His results are
(my<Clns, ()< Cp(lns)p,

where C is a constant independent of s. They may be
regarded as special cases of Lemma 2 with h(s) < Ins.
In view of the stronger assumptions of Ref. 15, it would
be interesting to see whether- it is possible to obtain
more detailed results than (41).

(41)

(f) 1t has been pointed out by Khuri'® that the Froissart
bound for o, ,(s) can be improved by Ins if the zeros of
his generating function [similar to (1)] do not collapse
on the origin as s — <. It may be of interest to study
whether the method developed here is applicable for such
a problem, too.
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APPENDIX

Lemma 1: The number 7,(s) of zeros of F,(z) within
the circle 1z - 1] <7 is bounded from above by

n(s) < erh(s) for s> s, (A1)

where ¢=2.718+++  ey<R, and R> 1,

Proof: According to Jensen’s theorem® nr(s) satisfies
the inequality

_r
(R-1)

On the other hand, an upper bound of Fy(z) for z=1+p
<R is obtained by applying Hadamard’s theorem! to the
three circles |zl =1, |zl =1+p, |z| =R:

F(1+p)s(1+pp'o, (A3)
taking account of (12) and F,(1)=1. From (A2) and (A3)
we obtain

+
n,(s) < lng(l 76/)5) n(s) (for »/6<R-1)

v/ 6

“In(i/o) M)

Optimization with respect to 5 yields the upper bound
(A1).

1
n,(s) < /s InF (1 ++/8), <5<1, (A2)

(A4)
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Lemma 2: The quantities

b,(s)= n' d —F(2) = (A5)
satisfy the inequalities

{en(s)/m", n<<hls), (A6)

bris)< min[2¢¢) RYSHR — 1)7]; n < N(s). (A7)

In particular, for =1 we have the stronger result
() =2b,(s) < eh(s). (A8)

Proof: From (A3) and Cauchy’s inequality for a circle

| z—11 =p we obtain
b (s)<(1+pr/pr, 0<p<R-1. (A9)
Optimizing this with respect to p we get
b,(s) < (h(:);i)n) He (@—ff—)> " for n<hls). (A10)
For n<<h(s) this can be approximated by (A6). In
particular,
b,(s) < eh(s), (A11)
b,(s) < ten(s)). (A12)

Actually (Al11) can be improved. Noting the positivity
a > 0, we obtain
b {sHby(s) ~ ) < by(s),

as is seen by applying Schwarz’s inequality to b,(s)=
=4Ynln~1)a, From (A12) and (A13) we find, for h(s)
»>1,

(A13)

by(s) < 1+ 3(1+ (2eh(s)y)/?

=3eh(s), (A14)

an improvement of factor 2 over (Al1l),

Lemma 3: If F(z) has no zero in |z—-1| <rfor all s
> so> 4m®, and if h(s) —~ « for s —~ e, then we have

leu(s)] <2 (h(s) In(1 + M), (A15)
lc,,(s)lsa%&h(s)ln(lw), n=2,3, >+, (A16)

where ¢ (s) is defined by (32).
Proof: Under the assumption, InF,(z) is holomorphic
in | z-11 <. Cauchy’s inequality gives for 0<p<y#

[ (s)] <——,,9, M,= max [InF(2)].

(A17)

[Recall F (1)=1.] According to the Borel—Carathéodory
theorem, '® M, is bounded as

2p

M < max In|F (z)]. Al8
e rY-p {zell =y I s I ( )
From (A3), (A17), and (A18) we obtain
2h(s)
[ (s)] < =) In(1 + 7). (A19)
Optimizing this with respect to p, we find
exls) <2 ne)n(1 + ), (A20)
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8(n 1)

le (s)] < n(s)In(l+4), n=2,3,°°>. (A21)
(The factor 8 can be replaced by 2¢ for large n.)
Noting that
c,{s) = b,{s) — 3b%(s) (A22)

is positive, we can obtain a better bound for ¢,(s) than
(A20). From (A22) and (A13) we obtain

30,(s)b,(s) - 1).

Combining this with (A21) for n=2, we find the im-
proved bound (A15). However, we cannot improve the
bound on ¢,(s) making use of (A21) for n= 3. This is
because c¢,(s) is not positive definite for n=> 3.

If F(z) is defined by B+ (1-8)3¥,a 2", 0< <1, in-
stead of (3), the inequalities (A13) and (A23) become

1b,(s )(” byls) ) < byls)
and

1-8
c(s)=3b (s)(Bb Byls) 1) ,

respectively. Thus the improved formula (A15) is
critically dependent on the property that 8= F (0)=+0.
Formula (A20) holds for any regular function free of
zeros in | z~ 1| <y, even for functions such as
expli(s)}{z - 1)] if we replace In(1 +#) by ». This exam-
ple fails to satisfy (A15), however, since its value at
z=0, exp[- h(s)], tends to zero for i(s)— .

Lemma 4. c (s) defined by (32) satisfy the
inequalities

cy(s)= (A23)

(s <2 i) n(t + 79, (A24)

- 2 1) ~

12,(s)] < -i(l’F——)h(s)m(uy), n=2,3, 0cc,  (A25)
where

- ’

- )+ ni(s) e vh(s)

h(s)=h(s) - nils) i m 20s) ) (A26)
n.(s) being the number of zeros of F (z) satisfying

r/2<|z-1]|<7r. (A27)

Pyoof: Since F (2) defined by (30) has no zero for |z
-1l<y, n F (z) is holomorphic in | z— 1| <. Thus we
find

————— max In|F_(z <
P M7 =p) |11y n| £, e, (A28)

in parallel with (A19). To evaluate an upper bound of
the right-hand side, we note that
- 1 ZT r n(s)
max ‘ nr(_ﬁj(______ v >
(z=z)z=2) | < , €20, (A29)

where the product is over the zeros satisfying (A27).
For zeros in | z-1| <#/2, we obtain

max ‘n"——i——i“ Fs(z)‘ <

[ 2=1)=pte (Z-Zi (Z—Z*)

|8(s)| <

| g=1l=ptg

n_(8)=nl(s)
g(%/i_e_) 4 4 (1+7+€)h(s)i(1+y+e)h(s)
K (A30)
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taking account of (A3). From (A29) and (A30) we find

max | F ()| <(§) nr(S)(1+r+ ey, (A31)

[z-1] =4re

Optimizing this with respect to ¢ we obtain

~ ni(s)
max | F (z)| < (1+ ph@-nr(s) (e_ﬂ(_s__)_) T (A32)

Iz-11=y ni(s)
Substituting this in (A28) we obtain (A24) and (A25) for
ni(s) << h(s). Unlike (A15) it is not possible to improve

(A24) since we cannot use {Al13) here.
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Resonantly coupled nonlinear evolution equations
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A differential matrix eigenvalue problem is used to generate systems of nonlinear evolution equations. They
model triad, multitriad, self-modal, and quartet wave interactions. A nonlinear string equation is also
recovered as a special case. A continuum limit of the eigenvalue problem and associated evolution
equations are discussed. The initial value solution requires an investigation of the corresponding inverse-

scattering problem.

1. INTRODUCTION

In recent years, a method of solution for the initial
value problem of certain nonlinear evolution equations
which describe physically important cases of nonlinear
dispersive wave propagation has been developed. The
inverse-scattering method was first ingeniously applied
to the Korteweg—de Vries equation by Gardner, Greene,
Kruskal, and Miura.'® Lax® demonstrated an alternative
formulation, which was successfully utilized by
Zakharov and Shabat® to solve the nonlinear Schrodinger
equation. Subsequent workers used these ideas in solv-
ing other interesting equations.*”® Recently, the coupled
system of partial differential equations describing reso-
nant triads has been considered by Zakharov and
Manakov.° Ablowitz, Kaup, Newell, and Segur, '>"!
using an eigenvalue problem similar to that of Ref. 3,
isolated a class of physically interesting nonlinear
evolution equations tractable by the inverse-scattering
method.

In this paper, we propose a class of higher order
differential matrix eigenvalue problems motivated by
Refs. 9 and 10. The resulting system of nonlinear
evolution equations describes resonantly interacting
wave envelopes. As special cases we: (i) rederive
Zakharov and Manakov’s result®; (ii) find a coupled
system of nonlinear partial differential equations which
describe the interaction of “multi-triad” resonant wave
envelopes; (iii) discuss an additional example, which
yields evolution equations describing the simultaneous
interaction of triad, multitriad, self-modal, and quartet
resonances; (iv) show how a nonlinear string equa-~
tion'?~** fits into this formulation; (v) as a limit of (iii),
derive a differential—integral eigenvalue problem and
an associated evolution equation. The evolution equa-
tions solvable by second order eigenvalue problems
(nonlinear Schrodinger equation, etc.) are also recov-
erable. We do not attempt to perform the inverse-
scattering analysis for the higher order eigenvalue
problems.

2. EIGENVALUE PROBLEM
Consider the differential matrix eigenvalue problem

a—v:igDv+Nv,

Ix (2.1)

where v is an n-dimensional vector eigenfunction and ¢
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is the eigenvalue. D and N are »Xn matrices. The
time dependency of the vector eigenfunction is chosen
such that

v
E.__Qv’ (2.2)

where Q is also an » X» matrix. The eigenvalue problem
of Zakharov and Shabat, ® generalized by Ablowitz,
Kaup, Newell, and Segur, ' is equivalent to (2.1) for
the 2 X2 case. The eigenvalue problem of Zakharov and
Manakov® may be put into this form. By cross-differen-
tiation of (2.1) and (2, 2) the eigenvalues ¢ are constant
in time ¢ if

Q.= N, +ig[D, Q] +[N,Q],
where [A, B] is the commutator of A and B,

[A,B]=AB - BA,

(2.3)

We show that simple matrix operators @ and N exist
satisfying (2. 3), such that (2. 3) is equivalent to the
“generalized potentials” N;;, ¢#j, evolving in time
according to a coupled system of nonlinear partial
differential equations., Here, as in the corresponding
2 x2 case by Ablowitz, Kaup, Newell, and Segur, '°
solutions to (2.3) can be obtained by expanding Q in
powers'® or inverse powers of {. There are many
possibilities.

3. RESONANT TRIADS
As the first example, we will show that the choice
Q:G(l)+§Q[O) (3.1)

yields the coupled system of nonlinear partial differen-
tial equations describing resonant triads (in the 3 X3
case) and multitriad resonance (in the » X7 case, n>3).
The substitution of (3.1) into the commutator equation
(2.3) yields the following equations in powers of £:

o?: 0=i[p, @), (3.2a)
otY): Q. =i[p,@"’]+[N,Q], (3.2b)
o(g%: Q" =N, +[N,Q"V]. (3.2¢)

Dand Q' are chosen to be diagonal matrices, D;
=6,,a,and ;7’=0;c;, so that (3.2a) is automatically
satisfied, where a; and ¢, are all assumed constant.
Equation (3.2b) is simplified since @‘®’ =0 and can be
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shown to yield

w=lc,—c)/ila;~a) N, for i#k, (3.3)

where we assume a;* q, for i+ k. The diagonal entries
of (3.2¢) imply that
R =Ny, (3.4)
The nondiagonal entries yield a system of n(x - 1)
coupled nonlinear partial differential equations which

the potentials N, (i# k) must satisfy
O Ny =Ny, +;Z:i NN (0 — oty

Qi) = QW ING + a0, NNy~ Ny, (3.5)

for i+ k, where

ay=(cy—c )/ ilay—a)=a,;.

The ikth entry N;, has a linearized velocity ¢,,, which
we thus insist is real. Since a;,=a,;, N;’s velocity is
the same as that corresponding to N,,. In most physical
problems different modes are propagated at different
velocities, and hence this suggests N, depends on N,,.
Furthermore, for system (3.5) to represent a reso-
nance phenomena,

Np=0,,N% for j>k, (3.6)

where the o,, are real normalizing coefficients and
where « indicates the complex conjugate. In this case,
the ¢kth equation will be equivalent to the kith equation
if

for all (3.7

P i>j>k

and the diagonal elements @'}’ and N,, are all pure
imaginary. This last requirement allows us to take

¥ = N,; =0 without loss of generality, as they effect
only the phase of N;,. A further reduced form of (3.5)
can therefore be written as

— *
Qi Nikx“‘Nikt +j>§i°jk Ny N = a;))

+d N Nyla,, = a;y)

+ 2, oi]'N;‘(!'Njk(ajk_aij) (3.8)

B>i>jF
for k>1i.

In the 2 X2 case, the nonlinear interaction terms
vanish and the uncoupled and uninteresting linear sys-
tem results,

¥ Nip, =Ny 5 (3.9

for k& >i.

In the 3 X3 case, the nonlinear interaction terms do
not vanish. Instead (3. 8) is equivalent to the result of
Zakharov and Manakov.® In particular, the potentials
Ny, (i# k) represent the amplitudes of a triad of reso-
nantly interacting wave envelopes. For example, by
letting Ny, =A,, N,;=A,, and N,;=A;, Eq. (3.8)
becomes

A=A, +052 (@5 =~ ¥32) 4,47,

Azt :a13A2x+(012-a23)A1A3’ (3.10)

*
A, = Q3 Ay t+ 05 (@ =) AT A,.
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By scaling the A ,’s, and by noting that (3.7) becomes
0,032 = = 0y, in the 3 X3 case, two distinct systems are
allowed. The “decay interaction” occurs when all the
O, are negative; otherwise it is the “explosive case.”
The “decay interaction” case has the existence of a
positive definite conserved “energy.*

In the general nXn case, n >3, the system is more
complicated. (3.8) describes resonantly interacting sets
of triads, what we call “multitriads,” as described
below. There are n(n ~1)/2 interacting waves. The fol-
lowing notation for these waves is employed:

k;; is the wavenumber and w,;=w(k,;), where w(k) is
the real dispersion relation. Then (3.8) describes the
nonlinear interaction between the n(n ~1)/2 wave
envelopes that obey the following resonance conditions:

Ry=hij—kpy=ky tkp=ky-k;;
R N NI g

J>k>i k>j>i kR>i>j (3.11)

N e e et
Wi T Wi = Wy =Wy T Wi =Wy — Wiy

for & >i{. Again, if all the o,; are negative, then there
is a positive definite conserved “energy.”

The case in which there are six waves (n=4) may be
described as follows. Three waves are nonlinearly
coupled when

k, =k, +k;

and
W =Wy T Wy,

w;=w(k;). The partial differential equations governing
such a resonant triad were obtained in the field of non-
linear optics by Bloembergen’® and for a general non-
linear dispersive media by Benney and Newell. '® If the
waves k,, k,, and k; form a resonant triad, then fre-
quently one of the waves of the triad (for example, k)
also simultaneously is a part of another resonant triad.
In this case

ky=ky +hy=ky R
and
W) =W, T w;=wy tws.

Examples of this are known to occur in nonlinear
optics, ?°:2! Other waves will be quadratically generated
by the waves k,, k,, k,, k,, and k;. Consider the wave
k4 — Ry which we define to be %,

ko= ky ~ ks

If, in addition to the above resonances, k, forms a
resonant triad with 2, and &, i.e., if

We= Wy = W3,
then the entire system of six waves is resonantly
coupled since kg=Fk,—-k;=k, ~k; and wg=w, — w;
=w,—w;. Bach wave forms part of two distinct triads.
An interaction of the above type, involving two coupled
resonant triads (including six waves), we call “multi-
triad” resonant.

4. HIGHER ORDER RESONANCES

Consider
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Q:Q(2)+§Q(U+§2Q(m. (4_1)

In the n Xn case, using the methods we have described
in Sec. 3, the following system of evolution equations
results:
i k; Yijk'aix (Nik Nu)
k¥
:Nijt +6,; Ny +‘;Nikaj(ekj_elk)
%

(ZB NN +Z[(Bkj +9 1N Moy

k#]

Bis Ny teuN

= (Bui + 7650 Nia th]) '*‘,;i: (Bej Nia Nojy ™ B NuNu,)
b j

"’k; ’g.i(hkmNthmNm‘VkmNu am i)

k% mtj
(i# ), (4.2)
where
a;,=(c;=c,)/la;—a;)=ay,
B =ay/ila;—a;)=- 8,
yin={a,—ap)/la;=~a)=v;n="ij
'*(Qm Q) ila,—a,)=¢;,
Q(z) Q(z) (4.32)
and
D;=a;b,,
Q(O)"C'GU)
Qi =a; N,y i#7,
BNy HEN;; = 2 ViaNuNuy, %7,
Q= 3
Q@+ 2 Peillu Ny i=j, (4.3)

where a;, c;, @i}, Q‘z’ are all constant. For conve-
nience, it has been assumed that N,;=0. We again let
N=0,N} (i >j). Then the ijth equation is equivalent to
the jith equation if a; is real, c¢, is imaginary (thus Qg

is real, B;; is imaginary, and y,, is imaginary), Q‘”
is imaginary (thus ¢,, is real), @i is imaginary, and

0p0;==0; foralli>j>k,

In the 2 X2 case, the nonlinear Schrédinger equation
is found (since there are no values of £ such that 2+#{
and £+ 7).

In the general 3 X3 case, the last expression in {(4.2)
vanishes since k must equal m. Dispersion is repre-
sented by the terms ¢N;; and N,; . The terms of the
form N;; [+++]in (4.2) represent cubic self-modal
interactions the first term in the bracket being a cubic
self-self interaction. In physical problems, these terms
are usually of smaller order of magnitude than the triad
term. The terms (9/2x)(N,N,,) and NN, for example
represent a higher order type of triad resonance.
Newell*? discusses the effect of these terms. In the 3 x3
case, by letting A, =N,,, A,=N,;, A;=N,, and by using
the relations (4.3) and N;;=¢,,N}%, we obtain the evolu~
tion equations

A =BpAy  FepAL =~ 01,4, (65 —65,)0,,4,AF
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- V12503204 AT), + BlsoazAzxA;
+ Bos 032A2A;x —A,[2B,,0, A, AT
ﬁzs)A3A; B;s)AzA;]: (4.4a)

+ 055( Y123 = = 041(¥120 —

Ay =BaA 0154, +(€; —€55) A, Ag
~V12sWA1 Ag), + B Ay Ay = BagA Ay
—AL[2830,, A, A + 055y 10s + Bog) AL AN
=05, (¥123 = Br2) A, AT,

+e A, —
2, " C13 g,

(4.4b)

=BaA,,  te Ay — O A, (e - €300, AT A,
= %1205, AT 4,), - ﬁlaczlAl*Azx
- 512‘721A2AT,, ~Ay[2B 5505, A AT

+05y(y10s T B1a) A AT — 05, (v10s + Bi) A, AT (4.4c)

In this form it is clear which terms represent linear
dispersion, cubic interactions, and contributions from
the triad resonance. Since all of these terms arise in
physical problems, (4.4) should make an excellent
model system for further study.

It should also be mentioned that a very interesting
nonlinear partial differential equation falls into this
formulation. The equation is,

Wy _wxx-ﬁ(wz)xx"wnxx:o' (45)

(4.5) was obtained by Boussinesq'? in his study of long
water waves [although (4.5) is not generally referred to
as the “Bossinesq equation” by fluid dynamicists|, and
independently considered by Kruskal and Zabusky (see,
for example, Ref. 13) in their study of one Fermi—
Pasta—Ulam problem. Zakharov'® has proposed an
associated eigenvalue problem. We find similar results
via our formulation.

The reduction proceeds as follows. In (4.2) for n=3,
let €= 9“:0 and

0o 01

N=| N, 0 (1+Q,)N,, (4.6)

k4

Ny 1.0

where 2, =exp(-27i/3) is a cube root of unity. If (4.2)
is to be consistent with N chosen via (4. 6) we are forced
to choose:

Bis=Ba==B2, %z = B (1 +293) 4.7
in which case the q,; are arbitrary as long as
ay +Qsa; +25a,=0.
The system (4.2) then reduces to
N:ut +tBa N3,II—(2[321/Q3)N21’C:0, (4.8a)
Ny, =~ BauNey,, =28, (1 = 2,)N, 1 =0. {(4.8b)

We may further reduce (4. 8a, b) to a single equation
by letting

N31:“¢x+v7 (4.9)
whereupon (4. 8a) yields

Ny = 1(2/28,,)8, +(2/2)9., . (4.10)
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Upon choosing

w=0o,,
u:"(l "'93)5
1~
V= _123’ (4-11)
Bxu=1,

Eq. (4.8b) reduces to the nonlinear string equation
(4.5).

It is known'* that (4.5) has soliton solutions. How-
ever, it is to be expected that the inverse problem
associated with (2.1), where N is chosen via (4. 6),
must be studied in order to do the general initial value
problem. The inverse question is presumably best
studied using the single equation

vy =W ANy + Ny v, +(2 +Q) Nyyo, (4.12)

(resulting from a,=9%, a,=8,, a,=1, r=-i¢?),
rather than in the system form. This is also true for
the Korteweg—de Vries equation, and is discussed in
Refs. 10 and 11.

Finally, it should be noted that in the case n=3,
where N,; tends to zero at infinity, the inverse problem
has been recently considered by Kaup® and Zakharov
and Manakov. #

In the n X% case (n >3), the last expression in (4.2) no
longer vanishes. However, it represents resonant
quartets. Whenever multitriad resonance physically
occurs, then multiquartet resonance must also occur
since, from (3.11),

kik:kim"kjm'—klzj! m>j>k>i:

and

Wiy = Wiy = Wi — Wyj, M>] k>0

(4.2) therefore describes the balance between dispersion
and many kinds of resonant interactions. In physical
problems, we note that these resonant processes are
usually of different orders of magnitude and hence (4.2)

is only a model system of evolution equations.

5. CONTINUUM RESONANCE

Finally, we note an interesting generalization of the
above ideas. The following eigenvalue problem and
associated time dependence,

—Z—; (x, y; 1) =itd(y)olx, v;1)
+f N(x, v, z;01(x, z;t)dz, (5.1)
an (5'2)

Fv (x,v;1) :fﬂ Qlx,y, z;)v(x, z; 1) dz,
may be viewed as a continuum (z— «) version of (2.1)
and (2.2). Setting v,, =v,, and §, =0 yields
R (x,y,2;1)

=N,(x,9, z;0) + ig[d(y) =d(2)]Q(x, v, ;1)
+ f: [Q(x, 2, z;t) Nlx, 5, 2";t) ~ N(x, 2', 2; ¢)

xQ(x,v,z;1)]dz’, (5.3)
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as the analogy of (2.3). Expansion in powers of { yield
nonlinear evolution equations. Letting, for example,

R=Q" +£Q"
results in the evolution equation,
aly, 2) Nx,v,2;1)
=N(x,y,2;0 + [ [a(z’,2) - aly, 2')]

XN(x,y,2 ;1) Nlx, 2’ 2;0)dz", (5.4)

where

aly, 2) =[c(2) = c(V)/i[d(2) - d(y)} = alz, v),

Q' =8(y - 2)c(y),

Q(“ == a(yi Z) N()C, y, 7;1),

N(x,y,y)=0. (5.5)
The symmetry condition

Nx, v, z;l) =oly, 2) N¥(x, z, y; 1) (5.6)
for y > z is consistent if ¢ satisfies

oly, z)o(2’, 2) = - oly, 2) (5.7

for y >z’ >z. (5.4)—(5.7) are a continuum version of
the multitriad resonance discussed in Sec. 3. Indeed,
(5.6) says we need solve only for N{x, v, z;t), 2z >y.
Hence Eq. (5.4) [with condition (5. 7)] may be thought

of as a resonance equation resulting from an appropriate
interaction of a continuous spectrum of modes.

Although the analysis is largely formal, it neverthe-
less suggests that differential —integral eigenvalue prob-
lems such as (5.1) may lead to the solution of higher
variable equations such as (5.4).

6. CONCLUSION

We have provided a procedure to generate isospectral
flows which are equivalent to systems of nonlinear
partial differential equations. The method of solution for
the initial value problem in the general nX»n case re-
quires an investigation of the corresponding inverse-
scattering problem. We have not done that here.
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A space-time is determined which is a solution of the Einstein-Maxwell equations for a nonsingular
electromagnetic field and for which the electromagnetic field tensor is weakly parallelly propagated along
its principal null directions. A coordinate system is given in which the metric depends upon one essential
arbitrary constant. The space-time admits a four-parameter simply transitive group of motions and its

Weyl tensor is of Petrov type 1.

1. INTRODUCTION AND HYPOTHESES

In this paper we consider space-times' V, satisfying
the following conditions:

I. The Einstein—Maxwell equations are satisfied,
that is,

Rab = Fac:Fbc - %gachdFCd’ (1 . 1)
F,,,b=0, (1.2a)
Fi4p;cy=0. (1. 2b)

II. The electromagnetic field tensor F,, is nonsingu-
lar. This implies that there exists a null tetrad?

(1,, m,, my,n,) such that

'l:‘ab:(p(l[anbl_m(ar—h-bl)’ (1.3)
where®

Fab:Fab—i*Fab- (1.4)
The null tetrad is determined by F_, up to the
transformation

I=el, m.=em, n.,=e"°n,. (1.5)

1I. The tensor F,, is “weakly” parallelly propagated
along its two principal null directions defined by [, and
n, . By this we mean that

+ +

Fab;ch:fFabs (16)

Fab;cnc:gi;‘ab' (1‘7)
IV. The Weyl tensor and Ricci tensor satisfy

2C ,oqltn®(Ien® — mem®) + Ry, (I°n® + mm®)=0.  (1.8)

V. The null congruence associated to the principal
null vector [* is expansion free, that is,

P, =0. (1.9)

The above conditions are invariant under the trans-
formations (1.5).

The main result of this paper is given in the following
theorem:

Theorem 1. In a space—time satisfying the conditions
I-V there exists a system of coordinates (u, x, v, v) for
which the metric and the electromagnetic field have the
following form:

ds® = di® + 2du dv - 2kx dy{du + dv)

+ (B2 - e*v) dy® — e7*v dx?, (1.10)
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F=(1/Y2) kexp(ibv)(dv du + kxdy ~dv +idx ~ dy),
(1.11)

where k is any positive real number.

A special case of this metric corresponding to & = 4
has been found by Tariq and Tupper.* They were
searching for solutions of the Einstein—Maxwell equa-
tions for nonsingular electromagnetic fields under the
assumption® that a null tetrad associated with F , is
parallelly propagated along the null congruences de-
fined by I, and n,. The above metric is included in the
case when the expansion of the null congruence defined
by I, is zero. In the same paper they found the general
solution corresponding to the case when the twist of
the null congruence defined by [, is zero.

Our conditions III and IV are equivalent to the parallel
propagation assumption of Tariq and Tupper. This
equivalence is made precise in the following theorem:

Theorem 2. The conditions III and IV imply that there
exists in the family of null tetrads defined by F,, a null
tetrad whose vectors are parallelly propagated along
the null congruences defined by the vectors [, and #,.
Conversely, if a null tetrad associated with F,, is
parallelly propagated along the null congruences de-
by I, and n,, the conditions III and IV are satisfied. The
proof of this theorem is given in Sec. 3.

The advantage of employing the conditions III and IV
rather than the parallel propagation condition is that
the conditions III and IV are invariant under the com-
plete group defined by (1.5) whereas the parallel propa-
gation condition is not. It also seems preferable to im-
pose, as far as possible, any supplementary conditions
directly on the electromagnetic field tensor rather than
on the spin coefficients.

The proof of Theorem 1 is given in Sec. 3, 4, and 5.
We shall employ the vectorial formalism of Cahen,
Debever, and Defrise®” for our calculations. A brief
description of this formalism together with the corre-
spondence® with the equivalent Newman—Penrose® (NP)
spin coefficient formalism is given in Sec. 2. In Sec. 6
we discuss some of the properties of the metric.

2. THE VECTORIAL FORMALISM

Let 7, and n, denote two future pointing real vector
fields on V, and let m, denote a complex vector field

such that metric on V, has the form
Zap = 2l(anh) - 2m(amb)' (2' 1)
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Then the vectors ki, ={l,, m,, m,, n,} define a null tetrad
on V,. If we introduce the 1-forms

=1 dxe, 6'=m,dx®, 0°=n,dx", (2.2)
the relation (2.1) can be written as
ds®=26%° — 20" 6%=g, 6707, (2.3)

A basis for the space of self-dual 2-forms (bivectors) is
given by

Zi= 028, ZP=0'7pl, Z3=1(0"03 - 01npY),  (2.4)
The metric in this space is
7“‘3:26§°‘ 68 — £6% 55, (2.5)

The absence of torsion of the pseudo-Riemannian con-
nection on V; is expressed by Cartan’s first structure
equation

46 + wi NI =0, (2.6)

where the w‘j denote the 1-form valued components of
the connection. The relationship between the connection
and the rotation coefficients 7‘ j» Of the null tetrad is

W'y == 0% 2.7
where

V=l o Ry (2.8)
In the vectorial formalism Eq. (2.6) has the form

dZ* + 0% ;N ZP= 0, 2.9)

The relationship between 0%; and w'; will now be given.
Firstly, we define

Oop="Yur® s (2.10)
The matrix o,, is skew-symmetric and one has

Opp=Wip — Wog, O y3=— 2wy, Op3= 2wy, (2.11)
where

Wi =gixW" (2.12)
Associated with 0% is the 1-form valued vector

0% = 4> fry 00, (2.13)

where €28 is the three-dimensional Levi-Civita symbol.

Writing ¢® in terms of the basis, one gets
o* =0°,6¢, (2. 14)

The quantities 0%, are related to the NP spin coefficients
as follows:

-v A u -7
0% =2 -7 p o -« (2.15)
-y a B -—¢

The curvature 2-form 6, is given in terms of the con-

nection by Cartan’s second structure equation
dw'; + w', Aw*; =01, (2.16)

The tetrad components of the Riemann tensor are deter-

mined by the relation
O}, =~ 4R! 00", 2.17)

The equations (referred to as the field equations)
which correspond to (2. 16) in the vectorial formalism

2307 J. Math, Phys,, Vol. 16, No. 11, November 1975

are
do®s+ 0%, AOT, = 2%, (2.18)
If one defines
Dap="Zpa =YarZ s (2.19)

then the relationship between the components of ~ and
the components of © is given by

1 =013~ Og3, Z13= =203, Zy3=20. (2.20)
Associated with Z, 4 is the 2-form valued vector

o = 370" (2.21)
If one expands 2, in the basis, one gets

Do =CapZ" ~ LRV, s 28 + E3 7%, (2.22)

where C,; is a complex valued trace-free symmetric
tensor which corresponds to the Weyl tensor, E,j is

a Hermitian tensor corresponding to the trace-free
Ricci tensor, and R is the curvature scalar. The quan-
tities C,z and E,j are related to the NP quantities as
follows:

-, -V, 2V

Cos=2 | -¥, -¥, 2w, |, (2.23)
20, 29, -4,
~%0 2?0 Pu

Eg=2| &, -®, &, 2. 24)

Py - Py 4Py

In the vectorial formalism the Bianchi identities have
the form

dZ® ;- %, A0, + 0%, ~E7, =0, (2. 25)

The commutation relations arise as follows: If A=A ,6°
is an exact 1-form, then it is closed, thatis, dA=0.

Using the expression for A and (2. 6), we get
(dA; - A;wi )6 =0, (2.26)

When this equation is written out in full, one gets the
four complex commutation relations.

We now give the relations between the Pfaffian deriva-
tives of the vectorial formalism defined by

B, =B ;" (2.27)
and the NP differential operators. Since k;°
= (n®, - m°, -~ m*°, 1%, we have

BYOIB'ana:AB, Blj=_B'a;,—'10=--5B’ (2 28)

B,=-B,m*=-0B, B,;=B,l°=DB.

The seli-dual part of the electromagnetic field F,, has

the form
F=F,zv, (2. 29)

In view of this the Einstein—Maxwell equations (1. 1)
and (1. 2) may be written as follows:

Eu5=- ZFGFB’
dF=0.

(2. 30)
2. 31)

We conclude our summary of the vectorial formalism
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by remarking that Eqs. (2.18) correspond to the NP
field equations while Eq. (2.6) is equivalent to the NP
metric equations. Equations (2.86), (2.9), (2.18),
(2.25), (2.26), and (2.31) are written out in full in the
article of Debever. !’ In this paper we shall write most
equations using the NP quantities as defined in Egs.
(2.15), (2.23), (2.24), and (2.28).

3. PROOF OF THEOREM 2

If we insert the canonical form for f*‘ab into (1, 6) and
contract successively with I°u® and m®n®, we obtain the
conditions

K=m=0, (3. 1)
By a similar procedure we obtain from (1.7) the
conditions

v=1=0, (3.2)

The only further consequences of contractions on (1, 6)
and (1.7) are

f=¢"D¢, (3.3)
g=¢"20¢. @.4)

It is easy to verify that the conditions (3.1) and (3. 2)
are invariant!! under the tetrad transformations (1. 5).
These transformations induce the following transforma-
tions for the spin coefficients € and y:

€' =e*(e+ 1Dw), (3.5)

Y =e™(y + z0w), (3.6)
where

w=a+ib. (3.7

In order to set ¢ =7'=0, we must have
(3.8)

The integrability condition for (3.8), obtained by ap-
plying the commutator!? [D, A], is

Dy-Ae=—(e+€)y— (Y +Y) e (3.9)

In view of the field equations!® (2. 18) this condition is
satisfied if and only if

Dw=- %, Aw=-3y.

(3.10)

which is just condition IV in terms of the tetrad com-
ponents. To complete the proof of Theorem 2, it is only
necessary to remark that the conditions

Y, + &y, =0,

(3.11)

are the necessary and sufficient conditions in order that
the tetrad vectors {l,, m,, m,, n,t be parallelly propa-
gated along both the null congruences defined by I*

and »°.

K=T=c=pv=T=y=0

In view of (3.5) and (3. 6) it is clear that the conditions
(3.11) are not invariant under a transformation (1.5)

unless
Dw=Aw=0, (3.12)

This justifies our remark following the statement
of Theorem 2.
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4. CONSEQUENCES OF CONDITIONS | AND 11

We choose as a null tetrad on V, a null tetrad defined
by F,, (see condition II) which is parallelly propagated
along the null congruences defined by I* and »n°. Thus
the conditions (3. 11) are satisfied. This is permitted
by virtue of the conditions III and IV and Theorem 2,
The self-dual 2-form associated with the electromag-
netic field hence may be written as

F=1F,(8°~ 0% — g1 ~6%) = F, 2%, 4.1)
where
Fy=0. (4.2)

Einstein’s equations (1. 1) or (2. 30) are now equivalent
to the statement

E1'1':E1§:E1§:E2§‘:E2§:0, E3§:_2F3F30 (4.; 3)
Maxwell’s equations (1.2) or (2.31) become!?
Do=2p¢, 8¢p=8¢p=0, Ap=2u0. (4.4)

The conditions (3. 11) and (4. 3) together with the field
equations (2. 18) imply

Vo=, =0. (4.5)

in view of (3.11), (4.3), and (4.5) Bianchi’s identities®
(2. 25) become

D&y =2(p+p)dyy, 0Byy=08,=0,

Adyy=-2(u + p)dyy, (4. 6a)
SV =da¥,, AV =-p¥,+0d,, (4. 6b)
DY, =p¥, - \¥,, O6¥,=0¥,=0, A¥,=-pl,+0¥,,

(4. 6¢)

6%, = - 4pY,, DV, =~ \¥, +p¥,. (4. 6a)
The commutator [6, 5] applied to (4. 6a) yields

PU=pL. 4.7

This is the so-called “coupling theorem” of Debney
and Zund, ¥ It is obtained here as a consequence of
Einstein’s equations whereas Debney and Zund derived
it from Maxwell’s equations.

With the help of Egs. (3.10) and (4. 6a,b) we obtain
the relation

0¥, = - (b +2p)7¥,, (4.8)

If we operate on both sides of the above with D and use
(4. 6¢, d) along with the field equations (2.18), we obtain
the further relation

(4pp +20 1 + 20X +3%,) A0 + (p + 20) (1 +21)¥, = 0. (4.9)

We now invoke condition V, which may be written as

In view of (4.7) we also have

If we subtract from (4. 9) its complex conjugate and

use the fact that ¥, is real, there results
(0% — OA)(Zpu — 3,) = 0. (4.12)

Since 2pp + 3%, =0 leads to a contradiction, the above
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equation implies

(4.13)
We shall now show that the combination & + B may be
made zero by a tetrad transformation (1.5) which pre-
serves the conditions e=y= 0. We have ¢’ + §’

= exp(~ ib)(e + B+ 6a). Thus a’+ B’ may be annulled if
we are able to set

Sa=-a- 8. (4. 14)

The commutator {8, 5] applied to (4.14) yields, on ac-
count of (2.18) and (3. 12), the integrability condition

(4.15)

OA=0X,

PE —pp+OX~0OA=0,
which is satisfied on account of (4.10), (4.11), and
(4.13), Thus, dropping the primes, we have

a+B=0. (4. 16)

We now proceed to the determination of the spin
coefficients p, i, 0, and A. On taking account of (3.11)
the relevant field equations are

(4.172,b)
Du=pp+or+¥, Ap=-p?-2AX, (4.17¢,d)

1t follows easily from (4. 10), (4.11), (4.13), and (4.17)
that

Dp=p*+00, Ap=-pl—~0r-1Ty,

Dp=Ap=Dp=Ap=0, (4.18)
pt+00=0, (4.19)
pZ+Ax=0, (4. 20)
¥, =pp - OA, (4. 21)

To complete our determination of p and p, we appeal
to Maxwell’s equations. By applying the commutators
to (4.4) we find on account of (4. 16)

dp=0u=0, (4. 22)
Equations (4. 18) and (4. 22) imply that
p=ik, p=il, (4.23)

where k and [ are real constants, It follows from (4.13)
that o= [0 exp(i6) and A= || exp(~ {0). Equations (4.19)
and (4. 20) hence imply that !0l = %! and x| =|I|. Thus

o= |k| exp(if), (4.24)
A= (1] exp(~ i6). (4. 25)

On account of (4.23), (4.24), and (4. 25) Eq. (4.21)
becomes

|B1| + Bl = - W,. (4. 26)

We note by (3.10) and (4. 3) that ¥, < 0 if the electro-
magnetic field is not too vanish. Thus (4. 26) implies
that

k>0, (4.27)

We may thus set 2= by a tetrad transformation. The
induced transformations for p and p are p’ = exp(a)p
and p’=exp(~ a) 1. In order to have p’=p’, we must
set

exp(2a)=u/p=1/k. (4. 28)
This is possible since %2 and I have the sign because of
(4.27). Thus dropping the primes we have
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(4.29)
(4. 30)

p=H =ik,
o=Fkexp(id), A=*Fkexp(-16).

The remaining tetrad freedom is 6% =4¢°, 6

= exp(ih) 81, 6% =63. We use this freedom to make
o= real. The induced transformations for ¢ and A
are 0’ = exp(2ib) 0 and X' = exp(~ 2éb) . Thus if we
choose 26 =- 6, we have 0’ =X"=k. Dropping the
primes gives

o=\=k. (4.31)

The above transformation preserves the values of p
and p given by (4. 29). If we now substitute the values
of p, i, 0, and X given by (4.29) and (4. 31) into the
field equations, taking account as always of (4.3), we
find that the spin coefficients have the following values:

k=mT=v=T=a=8=0

(4. 32)
p:u:ik, O:)L:k’ E=y= (i/Z) k.
The nonzero components of the curvature are
Vo= - 24k, -V,=,, =28, ¥,=-2iF. (4.33)

5. THE DETERMINATION OF THE METRIC

The values of the spin coefficients given in (4. 32) al-
low the determination of the metric of V, satisfying
conditions I—V in a system of canonical coordinates.
In view of (4. 32) Cartan’s first structure equation (2. 6)
yields the following:

d6°=2;r 01762, (5. 1a)

A0l = (827 6° — 09~ 01 + 161 6° + 90~ 6%), (5. 1b)

ded =2k 9162, (5. 1c)
We obtain from (5. 1b) the equation

dert~ging?=0, (5.2)

Thus by virtue of the Frobenius integration theorem1®
there exist a complex coordinate z and two complex
valued functions C and D of 4-variables such that

0l=Cdz+Ddz. (5.3)
In order that the metric be nondegenerate,
A=CC-DD#0. (5.4)

We now let # and v denote the two remaining real co-
ordinates. The 1-forms 8° and 8° may thus be written as

(5.5)
(5.6)

where a, e, f, and k denote real valued functions and
B and G complex valued functions of », z, z, and v
satisfying the inequality!?

'=adu+Bdu+Bdz +Bdz +edv,
03=Fdu+ Gdz + Cdz +hdv,

ah - ef # 0. G.7)
It follows from (5. 1a, ¢) that

48’ ~gt=de’~91=0. (5.8)
These conditions imply, by virtue of (5.3), (5.5),
and (5.6), that

Ay =€y, (5.9)

Ffo=hy. (5.10)
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The above equations permit us to make a change of co-
ordinates so that 8° and 63 can be written in the form

0'=du+Adz+Adz, (5.11)
03=dv+Bdz+Bdz, (5.12)

where A and B are complex valued functions of the four
coordinates. If one substitutes for 8°, 8! and 6° from
(5.3), (5.11), and (5.12) into (5. 8) there results

DA,-CA,=DA,-CA,=0, (5.13)

DB,-CB,=DB,~CEB,=0. (5.14)
These equations imply, on account of (5.4), that

A,=A,=B,=B,=0. (5. 15)

In other words A and B are functions of z and z only.

The most general coordinate transformation which
preserves the form of the 6! given by (5.3), (5.11),
and (5.12) is

u=u"+a(z'z"), z=2(",z"), v=v +b(2’,2").

(5.16a,b, ¢}

The transformation laws for A, B, C, and D are
A'=a, +Az, +Az,, (5. 17a)
B'=b, +Bz, +Bz,, (5. 17b)
C'=Cz, +Dz,, (5.17¢)
D'=Cz, +DZz,. (5.174d)

1t follows that the conditions (5.15) are preserved by
the transformation (5. 16).

We now compute the nonzero spin coefficients arising
from the tetrad 6* given in (5. 3), (5.11), and (5.12)
and which satisfies (5.15). This is effected by calculat-
ing in the natural basis the exterior derivatives of the
Z* defined in (2. 4) and comparing with the formula®’
(2.9). The results are the following:

i - 2y=A"(CC,- DD,), (5.18)
A=A"1(CD,~ DC,), (5.19)
p-2e=a"YDD,-CC,), (5. 20)
o=A"(DC,~-CD,), (5.21)
a=-p=1A"YC, - D;- BC,+BD,- AC,+AD)),

(5.22)
p=3s"18B,- B,+CC,-DD,+CC,-DD,), (5.23)
p=1ia"1(A,~ A;-CC,+DD,-CC,+DD,). (5.24)

In order to determine the metric functions, we com-
pare the values of the spin coefficients given above with
those in (4. 32). The resulting equations are

cc,~DD,=0, (5.25)
DC,~CD,=-kA, (5. 26)
CC,-DD,=0, (5. 27)
DC,~CD,=kA, (5.28)
Az - A, =-2ikA, (5. 29)
B; - B,=-2ikA, (5.30)
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D,-C;+AC,- AD,+BC,- BD,=0. (5.31)

The first step in the integration of these equations is
to use some of the remaining coordinate freedom to
set A=B. From (5.29) and (5. 30) we have

(A-B);=A-B),. (5.32)

It follows that there exists a real-valued function » of
z and z such that

B=A+7, (5. 33)
From (5. 17a,b) we have on account of (5.33)
B'-A'=(b-a),+(B-A)z, +(B-A)z;:
=(B-a+),. (5.34)
Thus B’ =A’ if we choose a~b=7. By (5. 34) the
relation
B=A (5. 35)

is preserved by all transformations (5. 16) with b =a + b,,
where b, is constant:
u=u'+alz’,2"), 2=2(z",2"), v=v"+alz’,2’")+b,.
(5. 36)
We next integrate Eqs. (5.25), (5.26), (5.27), and
(5. 28) to determine the # and v dependence of C and D.
To achieve this, we solve the first two equations for
C, and D, and the last two for C, and D, obtaining

C,=kD, D,=kC, (5. 37)

C,=kD, D,=-FC. (5. 38)
The system (5. 37) has the general solution

€ =C, exp(ku) + C, exp(- ku), (5.39)

D=C, exp(ku) - C, exp(- ku), (5.40)

where C, and C, are complex valued function of z, z,
and v. From (5. 38) we obtain the v dependence of C;
and C, which is

Cy=Pexp{- kv), C,=Q exp(kv), (5.41)

where P and @ are complex valued functions of z and
z. Hence C and D have the following form:

C =P explku - v)] + Q exp[- klu - v)),
D =P explk@ - v)] - Q exp[- k- v)].

When these expressions for € and D are substituted
into (5. 31) and (5. 35) is taken into account, we obtain

P'l:}_)z’ E:—Q? (5°44)

These equations imply the existence of two real valued
functions m and » of z and z such that

(5.42)
(5.43)

Q=in,. (5. 45)

From (5.17¢,d) together with (5.42) and (5. 43) we find
the following transformation laws:

P=m,,

(5. 46a)
(5. 46D)

P’ = exp(- kb)) (Pz, +Pz,.),
Q= exP(kbo) (Qzn - sz')-

By combining these we obtain P’ = exp(~ kb,) m, and
Q' =iexp(kby) n,. Thus if we choose 2z’ = s[exp(- kby) m
+iexp(kby)n), we obtain

P=Q'=1, (5.47)
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The conditions (5.47) are preserved by the coordinate
transformations

u=u'+a(z’,z", v=v'+a(z’,Z') +b, (5. 48)
z=2z'cosh(kby) +z’ sinh(kb,) + 2,

where z, is a complex constant. On account of (5.42),
(5.43), and (5. 47) the final form of C and D is, on
dropping primes,

C = explE(u - v)] + expl—~ Bl - v)],
D =explk@ - v)] - explkm - v)].

It remains to solve Eq. (5.29) which now becomes

(5.49)
(5. 50)

As-A, = 8ik. (5.51)
This equation has the general solution
A=-4ik(z+2)+1, (5.52)

where { is a real valued function of z and z. The
transformation law for A under the remaining coordi-
nate freedom (5. 48) is, on account of (5. 17a),

A’ =_ 4ik(2" +2') ~ 4ik(z, + Zy) exp(~— kby) + (@ + 1) ..
(5.53)

Hence, if we choose =~ a and z,=0, we obtain after
dropping the primes

A=—4ik(z +2).

The group of coordinate transformations which pre-
serves (5.54) is given by

(5.54)

u=u'+4ikexp(~ kby)(zq+2) (2" - ') + a,,
z =2z’ cosh(kby) + 2’ sinh(kb,) + z,, (5.55)
v="20"+4ikexp(- kby)(zy + zy) (2’ - 2') + ay + by,

where @, and b, are arbitrary real constants and z, is
a complex constant,

We summarize our results by giving the expression
for 8% and the metric of V, satisfying conditions I-V:

00 =du - 4ik(z +2)(dz — dz), 6°=dv- 4ik(z +2)(dz - dz2),

(5. 562, b)
6! =2cosh[k(u -~ v)]dz + 2 sinh[k(u— v)]dz, (5. 56¢)
dst=2dudv - 8ik(z + z)(du + dv)(dz — dz)
— 4(4K (z + 2) + sinb[2k(u — v)] (d2? + dZ?)
+8{8k2(z + 2)? - cosh[2k(x - v)|}dzdZ. (5.57)

Since the 8 are invariant under the transformation
(5.55), the same is true for the metric (5.57). Thus
the space—time admits at least a four-parameter group
of motions., In Sec. 6 we shall see that the maximal
group of motions is, in fact, a G;. It should be re-
marked at this point that all the second order differ-
ential invariants of the metric are functions of k¥*. Thus
|k! is an essential constant since it cannot be elimi-
nated from the metric by a coordinate transformation.
However, the sign of & is irrelevant.

In order to obtain the form of the metric given in
(1. 10), we make the following coordinate transforma-
tion and replace 2V2k by &:
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=- [V u'+V20'], z=(1/2V2)(x +iy),
v=— (1/N2)u'.

The 1-forms @ in these coordinates are after suppress-
ing the primes

(5.58)

0=~ (1/V2}du - V2dv+2kxdy, (5.59a)
0= (1/v2)[exp(~ V2kv) dx +i exp(V2kv)dyl. (5. 59b)
3=— (1/N2)du+ (1/V2) kx dy, (5.59¢)

To complete the proof of Theorem 1, Maxwell’s equa-
tions (4.4) must be integrated. In view of (4.32) they
become

b, =2ik¢, ¢,=¢3z=0, ¢,=-2ko. (5. 60)
By virtue of (4. 3) and (4. 33) the solution is
¢ =2k exp[- 2ik(u - v)]. (5.61)

The 2-form given in (1. 11) is obtained when one takes
into consideration (4.1), (5.56), (5.60), and the trans-
formation (5. 58).

6. PROPERTIES OF THE SOLUTION

We shall first discuss the symmetry properties of the
space—time with metric (1.10). The integration of
Killing’s equations yields the following four Killing
vectors:

d 0

X=Ef s= (6. 12)
X2=§2a§£7:%’ (6. 1b)
Xy=t s =Ry + o (6. 1c)
X4=g4«a_;,=_%+a—f)+%kx§_%ky%. 6. 1d)

Thus the maximal group of motions is a G,;. It is also
easy to verify, by integrating the equations for the 1-
parameter subgroups, that one recovers the transfor-
mations (5. 55).

From (6. 1) we find the commutation relations
[x, x,1=[x, X, 1= [x,, X5]=0,
(X, Xs]=RX,, [X,,X,])=-3kX,, [X;,X,]=ikX,.
(6.2)

These relations imply that the G, is of Bianchi®! type I.

Further since det(£;%)=—1#0, G, is a simply transitive
group?? of motions on V,, We also note that the solution
is stationary because X, is timelike.

The contravariant tetrad vectors k,° defined by (5. 59)
form a set of invariant vectors?? of the group since it
can be shown that they satisfy the equations

EPh - hPES =0,

det(r,*) # 0.

6.3)
(6. 4)

This elucidates the previously discovered fact? that
all the spin coefficients associated with this tetrad are
constant,

The self-dual electromagnetic field bivector Fe may
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be expressed in terms of the tetrad as

Foo— (1/V2) k exp(ikv) (halahobl _ hzta hib])- (6.5)
It is easily verified using (6.1) and (6. 3) that
£, F?=0 (=1,2,3), &, FP=irF>, (6.6)

Thus the electromagnetic field is not invariant®® under
the full group of motions G, admitted by the space—time.

From the property (6.6) we conclude that the class
of solutions presented do not belong to Ozsvith’s®® class
of homogeneous solutions of the Einstein—Maxwell equa-~-
tions, since he assumes that both the metric of space—
time and the electromagnetic field are invariant under
the transformations of a four-parameter simply transi-
tive group.

We conclude the discussion of properties of the
space—time by determining the Petrov type and by
giving a set of principal null vectors of the Weyl ten-

sor. On account of (4, 33) the biquadratic equation?®’
T+ 6T 2+, =0 6.7

has four distinct roots. Hence the Weyl tensor is of
Petrov type 1.

The tetrad components of the principal null vectors
are

exp(3in/4) a™?
exp(~in/4) at
exp(in/4) «

@ exp(- 3in/4)

o exp(in/4)

L=

e a1 (i=1,2,3,4)

exp(- in/4)

at exp(3in/4) exp(-3in/4) o

(6.8)
where o = (V10+3)!/2, It is clear from (6. 8) that the
principal null vectors of the electromagnetic field, [,
and n,, are not principal null vectors of Weyl tensor.
However, they possess an interesting geometrical prop-
erty in that they define the axis of the involution?® which
permutes the principal null vectors I! and /% and I3 and
I*. This property may be better understood if the quasi-
orthonormal tetrad® (t,x,y, 2) is introduced. Null di-
rections can then be represented as points on a sphere
which lies in the three-dimensional space orthogonal
to the timelike vector #. This sphere may be considered
as the field of vision of an observer whose 4-velocity
is . The principal null vectors I* thus yield four points
on the sphere, A=(8,-1,1), B=(8,1,-1), C=(8,1,1),
D=(-8,-1,-1), where 8= (1/V2)(c — a'). These points
form the vertices of a tetrahedron with opposite edges
equal in pairs and in addition with the edges AC and BC
equal. The points corresponding to the null directions
defined by I, and n, are E = ((1 + 82/2)}/2,0, 0) and
F=(- (1+8/2)1/2,0,0). These points lie on the line
joining the midpoints of the edges AB and CD. A rota-
tion through 7 about this line transforms the tetrahedron
into itself and hence is the axis of the involution men-
tioned above. We also note that the y axis joins the mid-
points of the edges AD and BC and that the z axis joins
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the midpoints of the edges AC and BD. Hence the y axis
is the axis of the involution which interchanges the ver-
tices A and D and B and C. Similarly the z axis is the
axis of the involution which interchanges the vertices

A and C and B and D, Thus the {, x, y, and z axes de-
termine the Riemann principal directions®® of the Weyl
tensor.

Note added in proof: Dr. B.O.J. Tupper kindly in-
formed us that he has found essentially the same solu-
tion; his result is to appear in Gen. Relativ. Gravit.

*This work was supported in part by a grant from the National
Research Council of Canada.
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Quantitative figures of merit for microscopicity (resolving power) and for coherence (the necessity of
simultaneous observations of large volumes) are defined operationally. Such indices are not assignable to
observables (which are equivalence classes of observation procedures) but to observation procedures. As an
application, the problem of reversibility is reconsidered. Known qualitative arguments explaining the
difficulty of creating certain processes are made quantitative. A conjectured theorem states that the
difficulty of preparing a state at t =0 so that a particular target situation is observed at ¢ = 7 increases

monotonically with 7.

1. INTRODUCTION

Some of the most commonly used terms in physics,
such as macroscopic or microscopic variables or quan-
tities, and coherent and incoherent states or variables,
have not been defined in a precise and general way. Il-
lustrative examples are in abundance, but one does not
have a quantitative index of microscopicity or of co-
herence. It is not enough to distinguish between objects
having or not having these properties, because there is
a gradual transition between small and large.

Pressure and temperature of a gas are macroscopic;
momenta and positions of individual molecules are com-
monly considered as microscopic quantities. Incoherent
beams add intensities when combined; coherent ones
may combine to have larger or smaller intensities. If
these words were used only as a summary characteriza-
tion of some phenomena understood quantitatively, pre-
cision would be an unnecessary luxury. When experience
suggests some general regularities in connection with
these loosely defined concepts, and when theory is
challenged to produce the corresponding predictions,
precision and generality become imperative. For
instance, if macroscopic measuring instruments are
said (by N. Bohr) to have some special properties not
shared by smaller systems, and when theory attempts
to formulate this statement precisely, a quantitative
measure of microscopicity becomes imperative. If one
tries to understand why it is difficult to produce a con-
vergent coherent spherical wavefunction, qualitative
descriptive words are in abundance. However, theory
ought to give a precise meaning to such words as “con-
trolling phases at distant points” and to derive from
prime principles theorems that embody and imply the
empirical circumstances.

Associating a well-defined mathematical object with
a nonmathematical procedure appears often deceptively
simple. The oldest fallacy of this kind is the association
of an integer multiple of a small positive number to the
physical concept of distance. The Pythagoreans proved
conclusively that the vertices of some triangles had no
distance under this definition. Modern physics shows
many cases where a loosely defined physical concept
was associated with a well-defined but ill-chosen mathe-
matical object. Von Neumann’s quantum mechanical
ergodic theorem, for instance, had, on closer examina-
tion, little relevance to the intuitively and somewhat

2313  Journal of Mathematical Physics, Vol. 16, No. 11, November 1975

loosely perceived ergodic experience of physicists.!

To avoid such pitfalls, it seemed prudent to approach
the problem in a somewhat unfamiliar manner. Usually
one seeks the mathematical counterpart of a nonmathe-
matical object or experience in an established mathe-
matical framework. A well-known example is the as-
sociation of particles with irreducible representation
spaces of the Poincaré group in the Hilbert space of
quantum mechanics, discovered by Wigner. The valida-
tion of such an association lies in the experimental
verification of the mathematical predictions implied by
it; in this case, e.g., the integer or half-integer spin
values of particles.

Unfortunately, in the matter of concern to us, mathe-
matical deductions are not readily available, and it
seems more prudent to begin by a precise operational
statement of what is suggested by experience.

As a model of this approach, one may think of Max
Planck’s® reconstruction of thermodynamics. The first
and second principles are stated first in an operational
form: “It is impossible to construct a machine which

. .” The mathematical theory is then constructed so
that its physical interpretation includes the principles.
In our case, adequate theories, classical and quantum
mechanical, exist, and the task consists of two steps:
the precise operational definition of macroscopicity and
coherence, and the mapping of these more or less non-
mathematical objects into the theory or theories.

It is a somewhat unexpected result of this search that
an index of microscopicity or coherence cannot be at-
tributed to an observable but rather to an observation
procedure. By the first, we mean a function on phase
space for classical, and a self-adjoint operator for
quantum mechanics. The algebra of observation proce-
dures, on the other hand, is a theoretical structure
more directly related to laboratory hardware.

As an application, the old problem of (apparent)
irreversibility is considered. Why is it not possible to
arrange the state of a uniformly distributed gas so that
it will, in an hour, be all concentrated in the left upper
corner of the vessel? The qualitative answer: “because
the necessary preparation procedure is too microscopic”
is made quantitative. A conjectured theorem is formu-
lated which asserts the increase of difficulty in preparing
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a state at =0 as the time 7= 7 of the target situation is
increased.

2. OPERATIONAL MICROSCOPICITY

An observation procedure—which, by a slight abuse
of language, we identify with an instruction or a com-
puter program for performing it--has two types of in-
structions: the blueprint for the construction of the hard-
ware and instructions concerning the location and time
at which marks are to be positioned, switches to be
thrown or levers to be actuated. By “time” we mean the
time elapsed after a starting signal for the experiment,
not calendar time.

An element o of the collection () of nonmathematical
observation procedures is a pair (b, {Pn}), consisting of
blueprints b and an ordered set of space—time points
{P}, e.g., points on the world line of a2 mark on a
telescope. A transformation

gV,~V,, (V,5P +gP, V) (2.1)

of space—time (the affine four-dimensional space V,)
induces a change of instructions through

@, {ph+®,{gP}.

The particular transformations considered here are
space translations

(2.2)

o (X, ) (x+a,1). (2.3)

It is assumed that such a change in the instructions
creates a feasible other procedure, i.e., that g induces
a permutation vV

Va0 —0,
[®,{P,D  (b{g.P,D].
A similar collection of nonmathematical procedures is
the collection § of state-preparing procedures. If objects
prepared by a procedure s € § are repeatedly made to be

observed by a procedure a < 0, the mean value of
numerical outcomes s (a),

(2.4)

N
liml—l-v? s{a)=E(s, a) (2.5)

N-o

is the expectation value £. The expectation is a map
E:SxO~R (2.6)

of the Cartesian product of § and (J into the reals. It
depends on the external field in which the experiment is
performed. We consider the complete set {¢} of such
expectations.

The particular property of observation procedures that
we want to define is a generalization of the resolving
power of a microscope. The resolving power is high if
a large gradient of luminosity of the object causes rapid
variations of the light signal received as the instrument
is translated. Let g, be a space translation by the 3-
vector a. Then the translation a induces the permutation

aF’V.aEO.

This translation induces a change of dial readings or
printouts of a:

s, 0) HEs, V, o).
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A procedure has a high resolving power if there exists
a state-preparing procedure s such that

|E(Gs, Vaa) = ECs, @) |a]
is large.
Assume that o has a supremum

fali= sup |&Cs,a) 2.7

sc§

EELEY

of all expectation values of « in all external fields. In
the following, we will be concerned only with this class
of procedures. Then, a figure of merit—the microscop-
icity (@) of an observation procedure a—can be defined
as

r(a)= lim |a|"? suig |EGs, V@) - Es, )|l (2.8)

lal-0 8=

Eetéy

if the limit exists.

To see the meaning of the definition (2. 8), consider
the quantum mechanical expression

é(s,a)="Trp §A§

for the expectation value (s, a). Here, psé is the density
operator which is the image of the state-preparing pro-
cedure s induced by the Hamiltonian corresponding to

&, and A the self-adjoint operator that is the image

of the observation procedure « induced by £.

A family {Ag(a)} is obtained by the translation opera-
tors P through

A§(a) =exp(iP * a)Af;C(O) exp(—iP *a).

If all operations are considered as interchangeable, Eq.
(2. 8) becomes

ra)= swp Trpf o A (@)- 141", (2.9)
s o9lal
se§
ey

Our definition of microscopicity does not agree with
some of the common connotations of the word. For in-
stance, the question what is the number of particles in

a cube of 1 cm?® is very microscopic in our sense, be-
cause the precise location of particles near the boundary
of the cube requires a high resolving power of the ob-
servation instrument. A more macroscopic question
would add some qualification such as “within an error
of....”

3. COHERENCE

If observation instruments examine conditions at
several points P; one has to distinguish between those
that combine the results of independent observations
at P,, P,, *+- and those in which an observation cannot
be subdivided into local ones, i.e., where an examina-
tion of a large region cannot be replaced by successive
observations of included smaller regions. Examples are
(1) observations of the mean velocity or the positions of
particles and (2) the measurement of the phase differ-
ence between the values of a wavefunction at different
points. An observation may be termed coherent or inco-
herent if it belongs to one or the other of these types.
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To make these heuristic remarks precise, we need
an operational definition of the decomposition of ob-
servations. We consider a sequence [s ()] of observa-
tion results sn(oz) obtained by using an observation pro-
cedure a on samples prepared by a given state-preparing
procedure s. Let [s ()] and [s,(8)] be two such
sequences obtained by the same state-preparing proce-
dure, but by two distinct observation procedures a and
B, each sample being observed only once and then dis-
carded, and assume that the sequences are random.?®
Consider the use of two observation procedures a and g
on the same sample prepared by the procedure s. One
obtains two new sequences [s’(a)] and [s/(B)] as results.
If the sequences [s ()] and [s/(a)] are stochastically
indistinguishable and the sequences [s,(8)] and [s/(8)]
are also stochastically indistinguishable for all state-
preparing procedures, and for all expectations & c {£},
we say that the two observation procedures are com-
patible {or mutually not interfering), because the per-
formance of an observation « on a sample observed by
procedure S has no relevant effect on the outcome se-
sequence, %

A special case, most frequently considered, is the
simultaneous performance of the two observations on
the same sample, but our definition holds as well for
the observation of the momentum at =0 (@) and = 7(f).

Consider a new procedure ¥ which is obtained by add-
ing the outcomes s/(a) and s/(f) of the two compatible
procedures « and S, performed each on the same nth
sample. One can properly call this procedure the sum
a+ p=7.

Similarly, one can define a procedure of by the
modified outcome sequences [sﬁ(a)] and, for a large
class of functions f, procedures with sequences [ f(s ().
By combining these operations, one can define functions
of the two procedures « and 8, e.g.,

2000 f=2pa=(a+ pf-a®- &£, (3.1)

One obtains a large class {F(a, §)} of real-valued func-
tions F of the two compatible procedures « and 8.

Conversely, given a procedure v, one can ask whether
it can be decomposed, i.e., replaced by compatible
procedures o and 5. This will be the case if there exists
a function F such that the procedure F(a,f) generates
the same mean values &{s, F(a, 8] as v, for all state-
preparing procedures and all expectations &£, i.e., all
Hamiltonians. This effective identify of procedures will
be denoted by the symbol =:

Fla, B)=7. 8.2)

It will be assumed that observation procedures are
associated with regions R of space—time in which the
observation is performed. The apparatus of the proce-
dure is not necessarily confined to R, but the procedure
must be insensitive to events outside of R (e.g., a
microscope focused on a microscopic volume). For
every procedure «, there exists a unique smallest re-
gion among those regions R with which it is associated,
which we will denote by R(a). This definition of such
sets O(R) of local observation procedures differs from
the assignment of space—time regions to observables
by the requirement that the intersection O(R,) "O(R,) of
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two subsets associated with two regions vanishes if the
two regions do not intersect:

[R,N R,=0] = [O(R,)NO(R,)=0]

for observation procedures, while no such requirement
can be imposed on observables.

It will be assumed, as an extrapolation of experience,
that two procedures belonging to spacelike regions of
space—time do not mutually interfere and are compati-
ble in the precise sense described above.

We consider simultaneous space volumes V,. If V,
+ V,=V, and vye()(V,), one can ask whether there exist
compatible observation procedures o, c((V,) (i=1,2)
such that ¥ can be decomposed as v~ F(a,, a,). Clearly,
a procedure ¥ that has such a decomposition can be
considered as less coherent than one in which the ob-
servation of events in V,; cannot be replaced by sub-
sequent observations in smaller volumes.

More generally, call V’ [such that R(»})D V’] indecom-
posable for ye (V) if there exists no decomposition such
such that

v Flay, ..., a), UR@)CV, (3.3)
i=1
and R(e,)C V' for some i=1, .. .,n.
Then,
¢(¥) =sup{Vol(V’)| V’ indecomposable for ¥} (3.4)

may be called the coherence of ¥ because at least a
region of volume c¢(y) must be observed iz foio, and this
observation cannot be replaced by a successive examina-~
tion of smaller volumes.

Thus far no theoretical (in a narrow sense) but only
operational assumptions have been made which are
directly falsifiable if not verifiable. We want to show
that within the framework of classical physics there is
no coherence in the sense defined (¢ =0 for all proce-
dures). The main assumption of classical physics can
be stated in operational form: All observation proce-
dures are compatible. (More precisely: Given two
equivalence classes of observation procedures, there
exists a procedure in one class that is compatible with
one procedure in the other class. )

Hence, all real-valued functions of observation pro-
cedures are observation procedures, and one can as-
sign to 0 the structure of an Abelian algebra,

If, in the spirit of classical field theory, it is further
assumed that the algebra ({R) can be generated by the
family {0}, 5 of point-observation procedures asso-
ciated with points x € R in 4-space, then each procedure
associated with a spacelike hyperplane % can be gener .
ated by the family {0 },, of point procedures (/, asso-
ciated with points x < 2. Hence, the irreducible region

Vi.r 18 a point.

4. APPLICATIONS

One can ask the question: Are more than 909% of the
gas molecules in a vessel concentrated in the left upper
corner at the time =07

The theoretical counterpart of this question is an ele-
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ment @ in the algebra of observables—a projection for
quantum mechanics, and a characteristic function of an
observable in phase space for classical physiecs. To
answer the question, one can measure the number of
molecules outside the corner, at the time {=0. One
could also answer the question by measurements per-
formed at an instant 7, if one knows the dynamics and
can solve the equations of motion. This alternative pro-
cedure is obviously more difficult to perform. If the
time 7 is large as compared to the relaxation time, all
macroscopic measurements fail, because they merely
indicate close-to-equilibrium conditions. It will be
necessary to determine within small limits of error, the
positions and velocities of all molecules (for classical
physics). For quantum mechanics, the requirements
are even more stringent, Not only the amplitude of the
many-body wavefunction but also its phase has to be
determined with a high accuracy. Hence, the difficulty
is due to an increase in the microscopicity and of the
coherence of the observation procedure. These heuristic
considerations can be made precise by saying that the
observation procedure 3(7), performed at time 7 has a
higher microscopicity and coherence than the procedure
a(0) performed at time 0, if both procedures are in the
equivalence class of procedures that constitutes (or
maps onto) the question . (The appendix summarizes
the assumptions concerning the observation procedures
and their mapping onto the observables.)

This problem may seem contrived, but it leads up to
the problem of irreversibility. One of the familiar il-
lustrative forms of this problem is the question: Why
do we never see the molecules of an uniformly dis-
tributed gas converge into one of the corners of the
vessel, although such a process should be possible by
the laws of physics? The gualitative answer is widely
accepted®: Such states exist, but it is very difficult or
practically impossible to produce them. It is also ob-
vious that the difficulty increases as the time interval
between the state preparation and the target situation
increases. (It is easy to realize the exceptional situation
by pumping gas into an enclosure, in the vessel, and
suddenly removing the walls of the enclosure. For a
microsecond, the high concentration persists.) One
would like to (i) state this answer in a precise and gen-
eral form and (ii) derive it from known laws of physics.
We shall try to do only the first.

The set of states in question (the target situation) is
defined by the requirement that certain observables have
mean values within some numerical tolerance. For
example, the observable is the question @ concerning the
presence of N molecules in a (not too sharply defined)
region, and the problem may call for a 90% scoring in
subsequent trials. Then, the set of states is given by

0.9<(Q<1,

where () is the expectation value of @ with respect to
the states to be prepared.

Such a set of states is called a weak neighborhood in
quantum mechanics, and, in classical physics, a volume
in phase space defined by the intersection of character-
istic functions. (We use the Heisenberg or time-inde-
pendent definition of states.) A state-preparing proce-
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dure is usually terminated (adjusted) by monitoring
experiments, Thus, the angular and energy width of a
particle beam are adjusted by monitoring measurements.
The difficulty of preparing a state can be measured by
the difficulty of monitoring. Hence, the microscopicity
of a weak neighborhood of states could be equated to
some monotonic function of the microscopicities asso-
ciated to the defining observables. An observable is an
equivalence class of observation procedures, and it is
only for the latter that the microscopicity and coherence
are well defined. Thus, if the observables defining the
weak neighborhood are associated with a region R, there
exist observation procedures in the equivalence classes
of these observables associated with R, but also with
many other space—time regions, and the microscopicity
then depends not only on the observables but on the re-
gion in which it is measured.

Thus, the problem of assigning numbers of merit to
various methods (instants) for preparing a given weak
neighborheood of states is reduced to the problem of
assessing the difficulty of various observation proce-
dures that belong to the same observable,

The intuitive experience says: It is more and more
difficult to prepare states at an instant {= 7 if they are
to lead to given observations at t=0, as | 7| increases.
The precise form of this statement can now be given.

Conjectured theovem: Given an observable A(0) asso-
ciated with the instant {=0, and a family of observation
procedures a(t) < A(0) associated with instants ¢ and
members of the equivalence class A(0), the coherence
cla(#)] and the microscopicity »[a(f)] increase mono-
tonically with [¢].

This conjectured theorem should take the place of the
conjectured (and disproved) H-theorem. It states not that
that disorder increases with time, but that our difficulty
in creating order at a time ¢, after our manipulation has
ceased, increases with the time delay ¢.

The difficulty of preparing the states in the weak
neighborhood may be defined as some monotonically
increasing function

f{EiV[ag(t)], ch{ai(t)]}

of the sums ¥, [@,(1)] of the microscopicities  and
}‘,ic[af(t)] of the coherences ¢ associated with the ob-
servation procedures o, performed at the instant ¢ which
define the weak neighborhood (the target situation)
through '

|EGs, @) = Elsgy @) | < gy
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APPENDIX

The relationship between the nonmathematical pro-
cedures () and § and their theoretical representatives
is made in two steps: First, the sets 0 and § are as-
sumed to have certain algebraic and topological prop-
erties; second, morphisms ¢ =~ ¥ and § = S(¥) onto the
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algebra ¥ of observables and onto the set S(¥) of states
on¥ , respectively, are introduced.”® The postulates
depend, of course, on the choices between classical and
quantum mechanical and between Galilean and relativis-
tic theories.

For convenience, some of the assumptions valid for
Galilean quantum mechanics, are reproduced here:

(A1) The set ( of observation procedures is a normed
star algebra with unit I, the set § of state-preparing
procedures a convex linear set, and {€} a collection of
mappings (expectations)

E:SxO—R
of the Cartesian product § x() into the complex numbers.

(A2) £(s, ) is a linear, positive, normalized form on

0 [5(3)1)'—_1].
(A3) £(+, @) is a linear function on §,

(A4) § and U are mutually separating in the following
sense: For every pair s,,s,€.5, the statement that
Elsy, @)=E(s,, @) for all ac( and all £ < {€} implies
s,=s,. For every ac(J, the statement that £(s,a)=0
for all £ {f} and all s § implies @=0,

(A5) Every expectation € € {¢} determines a kernel
K(E)={aec0|&(s,a)=01for all s S}.
Every kernel K(&), & €{¢}, is an ideal in 0.
(A6) All quotient algebras
O/KE)=4

are isomorphic to each other for all &£ e{¢& }. The algebra
of observables is a discrete von Neumann algebra.

(A7) A given £ € {€} induces an equivalence relation
E(E) of elements s, ¢ S

s,Es; iff E(sy,0)=E(s;, @) for all acO.

Then, the quotient set §/E(§)=~S(%) is isomorphic to
the convex set S(#) of normal, positive, linear, nor-
malized forms on ¥ (i.e., the normal states on¥).

(A8) Weak causality: There is a (nonlinear) represen-
tation T, ¥ V, of the time-translation group {7,} by auto-
morphisms V,{(0,} restricted to a family {(,} of sub-
algebras of observation procedures at instants ¢:

Ve:0,~ 0, [la®)eO,—alt -1 e0,.,]

such that for every & < {¢} and for every pair s, r< 5,
the statement that

E(s,a)=E0r, ) for all acl,
implies
(s, B=E(r, A for all Bel.

(A9) Strong causality: There is a (nonlinear) repre-
sentation T, k= V, of the time-translation group {7,} by
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automorphisms V, {0, } restricted to a family {0,} of
intrinsic (canonical) subalgebras 0, :

V:0,,70,,,. la®ecO, at-necl,.,.]

and a similar representation 7, — W, by automorphisms
W,|{S}, restricted to a family {5} of convex subsets (in-~
stant state-preparing procedures) § ,C §:

WS, =S, [swes,Fst-nes, ],
such that:

(a) identical state-preparing procedures are defined
by the statement that, for every pair &,, ¢, {&} and
for fixed ¢, one finds

Eyls,a)=Ey(s,a) for a0, andsc§,.

(b) the statement of strong causality is that for every
pair v, s€§, and every & €{¢},

Elr,a)=E(s,a) forall acO,,
implies
Er,H=E(s, B for all pel.

(¢) the union U0, of the intrinsic subalgebras gen-
erates (. The union UtS . of instant state-preparing pro-
cedures generates, by convex linear combinations, the
convex set §.

(A10) For every &£ € {€} and ac(), the statement that
é(s,a)=0 forallse s,
implies
E(r,a)=0 for all »< 5S.
(That is, all states can be produced at one instant. )

Another assumption to be added, in the context of the
present paper, is the commutativity of observation pro-
cedures which have the operational relationship of com-
patibility. It is shown in Ref. 5 that this assumption
agrees with what one may call quantum mechanical
intuition.

11,E. Farquhar, Ergodic Theory in Statistical Mechanics
Wiley, New York, 1964).

M. Planck, Vorlesungen iber Thermodynamik (de Gruyter,
Berlin, 1954).

A, precise definition of randomness is given by P. Benioff,
Phys. Rev, D 7, 3603 (1973).

‘A more precise form of this statement is: All four sequences
are (r) random in the sense of Ref. 3 and the probability mea-
sure constructed from [s,(a}] equals that constructed from
[s’,(@)], and the same is true for [s,(@] and [s, ()], respec-
tively. The construction is carried out explicitly in Ref, 5.

5P, Benioff, J. Math, Phys. 15, 522 (1974),

8J. Rothstein, Found, Phys. 4, 83 (1974).

"H, Ekstein, Phys, Rev. 184, 1315 (1969),

8Y. Avishai and H. Ekstein, Phys. Rev. D 7, 983 (1973).
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We show, by making use of the functional integral technique, that, for a large class of useful quantum
statistical systems, the partition function is, with respect to the coupling constant, the Laplace transform of
a positive measure. As a consequence, we derive an infinite set of monotonicly converging upper and lower
bounds to it. In particular, the lowest approximation appears to be identical to the Gibbs—Bogolioubov
variational bound, while the next approximations, for which we give explicit formulas for the first few ones,
lead to improve the previous bound. The monotonic character of the variational successive approximations

allows a new approach towards the thermodynamical limit.

I. INTRODUCTION AND HISTORICAL BACKGROUND

Our aim is to extend to quantum statistical mechanical
systems a variational and perturbative method intro-
duced in a previous paper, ' leading to monotonic con-
verging bounds for the eigenvalues of a semibounded N
particle Hamiltonian H.

More precisely, we showed that each pole of the Padé
approximation (PA) constructed on the resolvent of H
was providing, for the discrete part of the spectrum of
H, an upper bound to the corresponding exact eigen-
value, and that this upper bound can be used as a varia-
tional bound in the pivot |¢) (the test vector, for which
the mean value of the resolvant is computed). These
variational upper bounds were clear generalizations of
the Rayleigh—Ritz variational principle, which include
more moments than the first one: the nth moment being
(9 |H"| @).

In particular, when the moments do not exist (for
instance, in the case of ultraviolet divergence), but
admit a regularization, while the PA cannot have varia-
tional properties in the regulator (because they do not
remain bounded in the vicinity of their poles), it was
shown that the arctan of the PA admits nice variational
properties in the regulator, which allow one to recon-
struct the spectrum through an extended Padé—Ray-
leigh—~Ritz variational principle which includes the
regulator as variational parameter.

However, in physics, one is not only interested in
reconstructing the spectrum, but also in computing,
either the evolution operator exp(itH) or its “Euclidean
version” exp(— BH). exp(itH) represents the evolution
operator of the system between time zero and time ¢,
while exp(— BH) is related to the Gibbs density matrix
of the system at equilibrium and temperature 7 =1/8.

In the previous paper, all mathematical properties,
were based on the fact that the resolvent appears as a
Stieltjes function in the energy or in the coupling con-
stant parameter. Stieltjes functions are special types of
Laplace transform of positive measure. Similarly, from
the spectral decomposition of H, exp(—-BH) is, in 8, the
Laplace transform of a positive valued measure:

exp(— BH) = f; exp(— BE)dPy, (1.1)

0
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where dP; is the projector onto the eigenvalue E of H
and dP, is a positive operator valued measure.

The positivity of the measure allows us to construct,
for the trace of (I.1), approximations based on the
Gaussian integration method.? This approximation is
also known under the name of generalized Padé ap-
proximants (GPA), because the weights of the Gaussian
integration method are simply the residues of the
ordinary PA associated with the positive measure, while
the zeroes of the Gaussian method are the poles of the
same PA,

More precisely it was shown?:® that the GPA were
providing, for a finite number of particles N, mono-
tonic decreasing sequences of converging upper bounds
for the diagonal GPA, while the subdiagonal ones were
giving monotonic increasing sequences of converging
lower bounds to the partition function. The exact solu-
tion is constrained between these bounds.

Furthermore, ® these GPA can have variational prop-
erties in the number of particles N. By making use of
this remark, it is possible to obtain, for N —« (the
thermodynamical limit), a monotonic sequence of de-
creasing or increasing converging bounds.

This method converges clearly for any temperature
and any density. However, one would like to start from
an exactly solvable Hamiltonian H,, for which, for
example, the thermodynamical quantities are exactly
known, and perturb it, to see how these quantities are
changed. It is therefore of interest to study the
following:

Question: What are the positivity properties of

exp(— BH) in the coupling constant x
(where H=H,+ \H)? (I1.2)

We propose the following
Z(\)=Trexp|- B(H, + H )] = [ exp(=r7)du(7), (L3)

where du(7) is a positive measure the support of which
is contained in the convex hull of the eigenvalues of H,
(that is, between the inf and the sup of the spectrum of
H)).

Up to now, we are able to prove this statement in the
three following cases:
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A—H, and H , are Hilbert space commuting operators.

B—H, and H, are 2X2 matrices, and more generally
when exp(- BH,) has all its matrix elements positive in
a basis where H, is diagonal.

C—When
N pzt X
H,= ,Z; I +V(ry,...,Ty), DP,=-1iY, (1.4)
H,=V'(r;, P ...,y

Case A corresponds to classical statistical mechanics.
Case C corresponds to an N-body quantum mechanical
system of N spinless particles with the most general
bounded from below local interaction. We could not find
any counterexample to the general statement (I. 3).
Whether (1. 3) stands in general or is subject to restric-
tions is an open question. A consequence of the theorem
of case C is that it is possible to construct, for a sys-
tem, with a finite number of particles N, a monotonic
sequence of converging upper and lower bounds, to the
free energy per particle of the system:

FN(pJB,K):—(1/BN)]~0g[ZN(p;B: X)]’ (I- 5)

where p is the density of the system. In particular, it
is interesting to investigate the behavior N —= of these
bounds: the thermodynamical limit.

The lowest approximation, which is constructed from
the GPA [0/1] to the partition function gives rise to the
bound

Fy(M)<[0/1]y (A)=F,(0) + (1 /N) Tr(p,\H ), (1. 6)
where p, is the density matrix for the Hamiltonian H,:

Po=exp(- BH,)/Tr exp(— fH,) and

p =exp(— BH)/Tr exp(- BH). )]

(1. 8) is generally derived from the Gibbs- Bogolioubov
variational bound:

Tr(p, logp,) > Tr(p, logp). (1. 8)

Due to the extensive properties of the terms in Eq. (I.6),
the N —oo limit is straightforward and meaningful. The
next approximations [1/1] and [1/2] do not enjoy the
same extensivity property as the lowest approximation
[0/1]). In particular, in the thermodynamical limit, all
our bounds have the same limit as the lowest approxi-
mation {0/1] or [0/0] depending if one takes the [P-1/P]
or the [P/P] approximation.

Therefore, if one wants to work directly with N=«
on the bounds, the information coming from the knowl-
edge of more than the first two terms in the perturba-
tion expansion in A of the partition function seems to be
lost.

However, it is easy to circumvent this difficulty by
changing the traditions: One works with finite N (number
of particles) which provides a natural cutoff for the
perturbation terms of the expansion in A of the partition
function. Then, it is not difficult to show following the
method described in Ref. 3 that the bounds are varia-
tional in N.

Then one obtains, for the true free energy per parti-
cle, in the thermodynamical limit, a succession of em-
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bedded variational converging bounds, the variational
parameter being the number of particles itself.

Finally, we want to point out that, as will be shown in
the sequel, our method for treating the operator
exp|— B(H, + AH )] is based actually on Wiener’s func-
tional approach.

The reader will find:

—1In Sec. 11, the present status of the Laplace trans-
form theorems.

—1In Sec. III, the derivation of monotonic sequences
of lower and upper bounds to the free energy of a quan-
tum system of N particles.

—In Sec. 1V, the analysis of the thermodynamical
limit of the previous bounds, as well as the extension
of the method to the case of singular interactions.

—1In Sec. V, the conclusion and a general outlook for
the Euclidean field theory.

Il. THE LAPLACE TRANSFORM THEOREMS

We shall discuss under which conditions the following
conjecture holds:

Conjecture (( ): Let A and B be two bounded from be-
low selfadjoint operators, and | ¢) be an eigenvector of
B. Then

(¢ |exp[- (A +1B)]| @) = [exp(— A7) du(T). (. 1)

dp(7) is a positive measure with support contained in
the convex hull of the spectrum of B,

We shall prove the following theorems:
Theorem 1: (() holds when A and B commute.

Theovem 2: (( ) holds when, for all real positive
number p, exp(- pA) has nonnegative matrix elements in
a basis where B is diagonal.

Corollary to Theorem 2: (( ) holds when:

(a) A, B are any two dimensional matrices.

(b) A is a tridiagonal matrix [A,, =0 if j#(i;i—1 or
i+1}] in a basis where B is diagonal (4 bounded).

(c) Off-diagonal matrix elements of A are negative in
a basis where B is diagonal (A bounded).

Proof: —Theorem 1 is a trivial consequence of the
spectral decomposition of B,

—Theorem 2 makes use of the Trotter’s
formula * for bounded from below auto-adjoint operators.
We have

(@ |exp[~ (A +AB)| @) =1im (¢ |{exp(~ A/n)

X exp(—AB/n)}| @). (1. 2)

Consider
(¢|{exp(- A/n) exp(~ xB/m)}"| @) =X, (IL 3)

and

X,= [ do, -+ do,., exp{-\/n[b(@,)+ - + b(e,.,) + b()]}
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x(@ |exp(=A/n)| @) (@, |exp(~A/n)| @y -
X (@1 | €Xp(= A/1)| @), (1. 4)

where we have introduced (2n - 1) times the closure
relation for the spectral decomposition of B:

B={|¢) b(¢)(¢| do, (IL. 5)

I= [ |@)de(e]. (11. 6)
Therefore we have

X,= [ exp(- x7)du,(7) (IL. 7)

with
1 n
dp (1)= j depy - d(ﬂ,,-lﬁ(f— - ng b(%))

(@ |exp(-A/n)| oy
X (@, | exp(—A/n)| @) =+ (@,., | exp(— A/n)| @),

(11. 8)
where we have set

Pr=9- (11.9)

Since all matrix elements occurring in (I1. 8) are
positive du (7) is a positive measure. Furthermore,
the support of du (7) is clearly contained in the convex
hull of the spectrum of B. The limit # — < of (II. 8) is a
positive measure ® (see the Appendix for the proof).
Theorem 2 is then proved.

For the corollary first prove (c¢). Consider exp(- pA/n)
for » integer big enough such that (exp(— pA/n));, ~5,;
—pA,,;/n is positive for all 7 and j. This is possible, if
for i#j, A, is strictly negative and bounded. The
positivity of (exp(- pA)),, is then obtained by using
exp(- pA)=(exp(-pA/n))". The case where some A,
are zero can be dealt with by continuity. Conditions of
Theorem 2 are fulfilled without any hypothesis on the
diagonal elements of A, and therefore (c) is obtained.

The nondiagonal elements of a tridiagonal matrix can
always be given real negative values by multiplying the
basis vectors by a suitable phase factor. Then (b) be-
comes a particular case of (¢). It is clear, on the other
hand, that 2X2 matrices are all tridiagonal, which
proves (a).

Remark on the 2X 2 matrix case: In this case the
direct computation of the measure is possible. The mea-
sure appears as the sum of 5 functions the argument of
which are the eigenvalues of B, plus an entire and
positive Bessel function spread out between these eigen-
values. It would be interesting to investigate in the gen-
eral case of dXd matrices the nature of the measure.

Finally we want to point out that conjecture ((7) does
not extend to case where the mean value of exp(— (A + AB))
is taken in a general vector, instead of |¢) eigenvector
of B: Explicit counterexamples can be worked out.

Conjecture (( ) holds in quantum statistical mechanics
when we consider spinless particles. More precisely we
have the fundamental theorem:

Theorem 3: Let T, V, T+ V=H,, V', and H,+1V’ be
self-adjoint Hilbert space operators, bounded from be-
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low such that

N
T= Q pZ Pr=-1Y, (IL. 10)
V=V(r,,...,ry) (I1.11)
V'=V(r,,..., 1) (IL. 12)

where V includes eventually the wall potential which
describes the finite volume in which particles are con-
fined. Then, if we represent by r the collection

{r, 1, ..., 1y}, we can write

Y8, 2) =(r|exp[- BT+ V+av")]|r) = [ exp(— A7) du(7).
(1. 13)

the support of the positive measure du(7) extends from
the inf to the sup of the spectrum of V’. The proof goes
along the same lines as that for Theorem 2, using the
positivity of

(r’exp(—ﬁ/nTﬂr'):<%)3N/2 exp(_% ‘21 (r,.-r;)z).

(1I. 14)

We insert the closure relation for the position operator
in Trotter’s formula and set

(/(B,A)=(r|exp[~ B(T + V +1V")]|r)
=lim (r[(exp(~ BT /) exp(~ 8V /n)

X exp(— BV’ /n))"| 1) (IL. 15)
B 3Nn/2
=1lim (--) j dr) ... gpo-b
nee \4mTn
X exp[— %(i,; V(rtdn+ V'(r‘“))]
- L f) 3) (r(i) (§+1 02 1.16
48 H o =T i (II. 16)

where r‘’ stands symbolically for the set {r, r{", ...,
ri?tand r®=r=r®,

l/(B,X) can be rewritten as

({8, 2)=1im [ exp(~ A7) dp (1)

d“n(T):<_4%>an/2j‘ dr ... gro- 6(7_52\:‘ V;(r(i)))

(1. 17)

n-1

rn SR Gz _B ¥ Vipt)
Xexp(— 6 MJZ)(rj — r{tDy n‘Z} (r9).

=1
(I1.18)

Clearly //(B, 1) is the limit of the Laplace transform of
positive measures dy,. Trotter’s theorem tells us that
the limit in (II. 17) exists and du (1) itself has a limit
which is a positive measure du(7) (see the Appendix for
the proof) and

UB,N) = [ exp(=r7)du().

Of course, the support of du(7) is obtained as the con-
vex hull of the spectrum of V’, which means the interval
going from inf spectrum of V’ to sup spectrum of V’.

(11. 19)
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It is clear that this proof of Theorem 3 could have
been derived using the Wiener functional integration in-
stead of Trotter’s formula.* It is evident that, in all
these theorems from 1 to 4, one can replace every-
where the mean value by the traces.

Extend our results at least for the trace to more
general situations, such as the finite dimensional case,
which can be thought to describe a discrete fermion
field, could be of a great interest for the theory of
functional integration itself.

11l. UPPER AND LOWER BOUNDS TO THE FREE
ENERGY OF A QUANTUM SYSTEM OF N PARTICLES

We are now faced with the problem of approximating
[ef. (1.2) and (1. 3)]:

Z()\):faW exp(—AT)du(T), (II. 1)

In general, a, the lower bound of the spectrum of the
perturbation, will depend on the number of body N. We
shall give to ourselves the “perturbative” expansion of
Z@)

au(r)>0.

zo)= 3 &

n=

Eeps (1. 2)

(=]

where the moments are
o= [ (). (I 3)

It is always possible when q is finite (finite number of
bodies) to transform (III. 1) into an analogous problem
with a=0 by setting 7=a+ £. In (IIL. 1) we get

Z(A\)=exp(— ra) fﬂ exp(—A&E)du(a+ £). (1. 4)
The moments &, of

Z0)= [ exp(~r)dua+ ) (1. 5)
being simply related to the moments u,:

u,= g C? a i, (IIL. 6)

The interesting fact is that it is possible knowing a
finite number of p, (or ﬁn) to get lower and upper bounds
to Z(A). In fact much better can be achieved: Monotonic
sequences of lower or upper bounds can be constructed
which constrain the solution Z(1).2 We have the following
set of inequalities:

Z[o/ll()\) < lelzl(x) K vre & ZlP-l/Pl(k)< e & Z()\),

and
Z(A)< e < ZIPIPI) < oo < Z12/2)(0) < Z11/10(y)
<Z™70 ), (O1.'7)
where
ZlP-l/Pl(A):é w P exp(-AEP)), (I11. 8)
ZWPIPI() = _i P exp(— XE,(P) (25:0). (1I1. 9)

i=

(=]

These formulas are just the traditional Gaussian integra-
tion approximations. It is, however, simpler to inter-
pret (II1. 8) and (IIL. 9) as generalized Padé approxima-
tions. 28
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In fact, to build up the £’s and w’s, one has to intro-
duce the Stieltjes function associated with the Laplace
transform (II1. 5):

R(Y) f

for which we can construct the PA to R()\) in terms of a
finite number of moments u,. They read

du( a+£)

BTSN (I11. 10)

(P-1/P] 3 wi® tp/P1 ____’?fip)_
R ()\):hzl, m: R )= Z} 1+£(P))\ »
(I11. 11)
EF=0.

The &’s are simply connected to the poles of the PA to
R(\) and w’s to their residues. On the other hand the
denominators of PA are set of orthogonal polynomials
with respect to the measure ® du. This allows us to
understand how the Gaussian integration is a particular-
ly simple generalized Padé approximation. For more
details on generalized PA see Ref. 6, on the Gaussian
integration see Ref. 2, and on the orthogonal poly-
nomials, Ref. 7.

If we consider the partition function for a quantum
system of N particles interacting via local N-body
potentials, then

=N
Hy= Z; PEHV(r,...,r)+aVi(r,...,r,) (I.12)
i=
=H,+H,. (II1. 12)

Using Theorem 3 and the inequalities (III. 7), we get,
introducing the free energy per particle,

Fy(x)=-(1/BN)log[Z(x,N)], (IIL. 13)

as well as the free energy per particle given by the
(P/Q]th approximation,

FiP/9() = - (1/8N) log[Z'P/ 9, N)], (111. 14)
the following inequalities:
FY/O) < FHH0) < < FPIPIO) <o S Fy(A) < oo
<FP P < - < FIO/M(Y), (I1I. 15)

In this set of inequalities we recall that F() is the true
free energy per particle (N finite) and Fi¥/ 9(1) is [P/Q]
generalized Padé approximation to it:

FJIVP-UP 1(A)=—(1/8N) logexp[—xa(N)]é w®

X exp(— A£{P?) (I1L. 16)

and an analogous formula for FIF/F'(x).

Before going into the explicit formulas for the ap-
proximation let us remark that the [P-1/P] approxima-
tion does not depend explicitly on the lower bound a of
the integral in (III. 1), this property is due to the well-
known homographical transformation properties of the
[P-1/P] PA under a translation on the variable of
integration, property which is not true for the [P/P]
approximation. As a consequence, for the [P-1/P] GPA
one does not need to make the o translation as in (III. 6).
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In general we shall give our approximations, in terms
of the “moments”:

dk

be=(=) =% , (IIL. 17)

A=0

Zy()

where Z,(\) is the true partition function for N particles.

However, it appears to be more convenient to introduce
the cumulants defined by

C,=(~ 1)" log[ YO, k>1 (I11. 18)
=0
The first three cumulants read
2
c,=8, c,=t _ k5o
Ho Ho o
(O1.19)

cazﬁf1 R e P R
by Fo Mg by

This allows one to have a simple understanding of the
lowest approximations, which make use only of the first
three moments or cumulants.

With these remarks in mind, one can now consider:

— The [0/0] approximation which reads

FPIO\) = - Elﬁ log(exp(—xa)u,) (II1. 20)

=Fy(0)+ 3 A “(N) < Fy(\), (IIL. 21)

which provides a lower bound to the exact free energy.

— The [0/1] approximation which reads

F},°/”(>‘)= [31\7 log[p.o exp( x‘—;-l)]

0

(I11. 22)

=Fy(0)+ — Tr(poH,)> Fy(d), (111. 23)
which provides an upper bound to the exact free energy,
where we have introduced the unperturbed density

matrix

po=exp(— BH,)/Tr exp(—~ BH,). (I11. 24)
If we introduce also the exact density matrix
p=exp|- B(H,+\H )}/Tr exp[-B(H,+rH )] (II.25)

We can derive (III. 23) from the Gibbs—Bogolioubov
inequality:
Trp, logp,> Trp, logp. (I11. 26)

One recognizes in (II1. 23) the traditional Gibbs—
Bogolioubov inequality of quantum statistical mechanics
for the free energy, which appears to be nothing but the
[0/1] GPA in our scheme.

— The [1/1] approximation reads
F;,l/ll (K) — FIIVO/OI(K)

- 1 log (Cz +(C, - a)® exp{- A[ 2

BN C,+(C,~af

(I1. 27)

This approximant clearly provides a better lower bound

to F,(2) than the previous FP/°'(p).
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+(C, —aPl/C, - a})

And the [1/2] approximation reads

A C 1' C,\? 1/2
{1/2) [0/ 11 3 _ 3
EyN=Fy" o5 5C, BN 108 °°Sh[(zcz) +CZ]
(C,/2C,)

1
~ BN 1°g{ [(C./2C, 7 + G172

sl (8]}

FL}/21(3) provides a better upper bound to F, (1) than
FI/1(\) (which is the Gibbs—Bogolioubov bound).

(11 28)

To understand clearly the content of these new bounds,
it is necessary to consider the thermodynamical limit;
this is the object of the next paragraph.

1V. UPPER AND LOWER BOUNDS FOR THE FREE
ENERGY OF A QUANTUM SYSTEM OF N
PARTICLES IN THE THERMODYNAMICAL LIMIT

Before we take the limit N — <« (number of particles
going to infinity) on the set of bounds (IIl. 15), we want
to point out that, for fixed N, if we let the order of
approximations P — «, the two bounds

FFPIPYN) < Fy(N) < FPHPIQ) (Iv. 1)

tend to each other and therefore to the true F,(\), when
the moment problem is determinate. For a finite num-
ber of particles and a bounded perturbation the moment
problem is always determined because then, by Theorem
3, Z,(7), the partition function, is an entire function of
A, the support of the measure being bounded. The radius
of convergence of the Taylor expansion of Z,(x) in 2
being infinite, we have for the moments the inequality

|u,| <en!, €>0, (IV.1%)

and therefore the Carleman® condition is fulfilled and
the moment problem determined.

The limit we have to take is

lim lim FP/PY(\)=F(\).
N=®w P-ox

(IV. 2)

It is not possible to invert these two limits even with
the use of PA instead of the perturbation series. How-
ever, we shall see that we can connect N and P by a
variational principle, in such a way that P becomes a
well-defined function of N, such that

P—~w, N(P)—x (Iv. 3)
and

F(A)=lim FFLPI0). (Iv.4)

p-uo

Before explaining this technique, let us see what are
the limits for fixed P of the approximations:

lim FIP/PI\) or lim FFY/PIN).
N N~ o

— The thermodynamical limit of the [0/0) approxi-
mation: From (III. 21) taking the limit N — =, we get

F(0)+(A/B)a<F(\), (Iv.5)

where g is the limit a(N)/N which exists for physical
situation. ® We therefore obtain our lower bound for the
true free energy, which is linear in the coupling 2.

Bessis, Moussa, and Villani 2322



— The thermodynamical limit of the [0/1] approxi-
mation: From (III. 23) we get, in the limit N —,

F(0) +xF'(0)> F(0).

This bound is equivalent to the Gibbs—Bogolioubov

bound and gives rise to the concavity property of F(1)

in A. One can see making use of the extensitivity proper-
ty of the cumulants that the other PA will give in the
limit N —« either the bound (IV. 5) for the [P/P] or the
bound (IV. 6) for the [P - 1/P]. This is not surprising,
because it is due to the nonuniform convergence of the
approximations in the limit N — <, To set useful sets of
converging bounds, we must now use the variational
properties of our bounds in the number of particles N.

(Iv. 6)

Those variational properties are deduced from the
following theorem °:
Theovem 5: Let
ADNIKABDN)< - <APYN)< -+ < A(N) (Iv.7)

be a monotonic sequence of converging lower bounds to
A(N) for any N> 0.

Suppose, for N> N,, A(N) reaches its sup for N=,
A(=)=A,
Then, for N>N,, A‘PN) has a sup in N: A’ which

ADVCANN<C . <API< v < A (IV.B)
and

lim AP =4, (Iv.9)

P-w

Therefore, we are able due to the monotonicity of the
set of approximations to extract a variational subse-
quence which converges towards the exact (N — =) limit.

A corresponding theorem can be derived also, ob-
viously, for monotonic sequences of converging upper
bounds provided A(N), this time, reaches its inf for
N =, when N> N,.

For a certain number ®® of physical problems the free
energy appears to be a monotonic function of the num-
ber of particles. For such systems we can directly ap-
ply the previous technique and look for extremal values
of the approximated free energy per particle F{P-!/PI()
in N, this will give an upper bound to the true F(\) for
the case where F,(\) reaches its inf at N==, For the
case, where F,()) reaches its sup at N==, we shall
use the extremal value of FI7/P!(\) in N to get a lower
bound to F(A). The interest of this method is that it is
a convergent algorithm for any temperature, density or
coupling. The price to pay to have these nice conver-
gence properties in the coupling constant, temperature,
and density is to work in a framework of a finite number
of particles. In fact, if one uses periodical boundary
conditions for the statistical system (such as to consider
the system on a torus) it is very likely that F, (1) as a
function of N is extremely flat round N =« (all deriva-
tives in N equal to zero) and therefore extremely good
numerical results can be achieved even with low ap-
proximations, that is, with low values of N.

It will be the object of forthcoming papers to illu~
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strate by physical example the usefulness of such
methods.

Extension of the method to singular interactions

In the previous section, we have treated the case
where the perturbation series of the partition function
for a finite number of particles N was existing and the
moment problem determinate, that is, for bounded
perturbations. In practice one has often to face the
problem of an unbounded perturbation operator asso-
ciated with hard cores or arbitrary singular interactions.
In such cases the moment problem could become un-
determinate or the perturbation series itself may not
exist any more.

We shall show how the method we propose adapts it-
self to such a case.

Let us consider an N-body local interaction via a two
body singular potential; for instance,

Vt(rvrza---,rzv): g} V(Z)('ri—rj|)’ (Iv.10)

where V,(¥) is an arbitrarily singular potential in the
origin bounded from below (which corresponds to
the physically interesting case).

Let us regularize V,(») in the following way:

Vole), 7 <e,
Vi (n= (IV. 11)
Vy(7), 7=e
It is easy to see that for 0<¢, <¢,<¢,
Vi sver, (IV. 12)

The inequality being taken in the sense of operators.
Then defining the regularized N-body perturbation
interaction by

Ve, by, ..., T =20 V(|2 =1;]), (IV. 13)
i<i
we see that in the sense of operators
() (e5)
V,''> Vv, 0<¢ <¢,<¢,. (IV.14)

We have then'®
Zy(X, &) ="Tr exp|- B(H, + 1V, )]
< Zy(\, &) =Trexpl-B(H,+ 21V 2],

0<¢ <e,<g,. (IV. 15)
That is, the partition function appears as an increasing
function of the ultraviolet cutoff ¢, for e sufficiently
small.

We can now treat the “ultraviolet” cutoff ¢ on the same
footing as the number of particles N in the previous
section.

The regularized free energy per particle F,(),¢) de-
pends now on two cutoffs, N the number of particles and
€ the ultraviolet cutoff. The true free energy is the limit

Lm lim Fy(x, e)=F(}). (Iv. 16)

N~ 0

However, F()) is also by the previous argument
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Fy=1lim sup Fy(x,e).
N~ -0

(IV.17)

Let us suppose F (A, €) reaches its sup for N =«; then

F(\)=sup sup Fy(r,e}, N>N,, e<e, (Iv.18)
N €
and, by Theorem 5, we are able to extract from the
sequence of [P/P] generalized Padé approximations built
on the knowledge of only a finite number of regularized
terms of the perturbative expansion in X of the partition
function, a variational set of monotonously converging
lower bounds to F(}).

It is not very difficult to treat the case where Fy(x,¢)
reaches its inf for N=<, in an analogous way, by
multiplying the partition function by a suitable ¢ depen-
dent factor.

Conclusion

In this paper, we have shown how the positivity prop-
erties of the partition function in the coupling constant
lead to a new method for approximating it. This method
enjoys the remarkable properties of converging for all
temperatures, all densities, and all values of the
coupling, still being built up from the standard perturba-
tion series in the coupling, or its regularized version
when the interaction is singular and the perturbation
expansion does not exist. Furthermore, the approxima-
tion is achieved through monotonous sequences of in-
creasing and decreasing bounds to the partition function.

To reach the thermodynamical limit, it is necessary
to consider the variational properties that these mono-
tonic bounds exhibit in the number of particles N (and in
the cutoff ¢ when the interaction is singular). We then
extract from the previous bounds monotonic sequences
of converging upper (or lower) bounds to the free energy
in the thermodynamical limit, which converge for any
temperature, density, and value of the coupling.

Outlook

If one considers now the case of the Euclidean field
theory, one deals with a double regularization: one for
the volume divergences and the other for the ultraviolet
ones. As we have shown for the statistical mechanical
systems, it may be possible to construct PA which will
give rise to variational properties both in the volume
and the UV divergencies. This has been done explicitly
for the UV divergencies coming from the theory of
singular potentials in Ref, 9.

However, due to the lack of any existence theorem, it
is not possible, for the moment, to use this technique
in a rigourous way to achieve renormalization. We can,
however, describe, shortly, what would be the proce-
dure. In this approach, one first compute, PA for
physical quantities at a given order P, in terms of the
cutoff

GP(, 0),

where (P) is the order of PA, X are the bare parameters,

C the cutoffs. Then the cutoffs are fixed by requiring
oGP (x,C)
= 0. (Iv.19)
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This fixes the “best” cutoff for the given order of ap-
proximations (P). Then the bare parameters A, and the
cutoffs C are eliminated with the help of the set of
equations (IV. 19) among sufficient physical quantities G.
This scheme would lead to have a renormalization
procedure simultaneous with the summations of the
perturbation series, in contradistinction with the or-
dinary process in which one renormalizes first and then
is faced with the problem of summing up a divergent
series. Furthermore, the difference between renor-
malizable and nonrenormalizable theories disappears in
this scheme. Such scheme has been numerically tested
for the four fermions interaction with zero mass.!!
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APPENDIX
We want to prove the following:

Theorem: Let du,, du,, ..., di, be positive measures
having Laplace transforms Z,(A), Z,(2), ..., Z (})
Suppose that, for any positive or null x, Z,(x) —Z(»).
(simple convergence) and that the support of all the mea-
sures du, are contained in (0, ). Then Z()\) is the
Laplace transform of a positive measure di which is
the limit of the du, and the support of du is contained in
(09 co).

Proof: We first prove that Z()) is the Laplace trans-
form of a positive measure du: Z,()) is holomorphic in
Rex> 0. Furthermore, Z (1) is uniformly bounded in
Rex > 0 because

|2,0] < [ exp(- TRer)di, < [ ap,=z,0). (a1

But for n>n,

Z(0)~e< Z,(0)< Z(0) +e. (a2)
Then for n>n,
1Z (W) <C=Z(0)+¢, Rer>0. (A3)

By Vitali’s theorem, it follows due to the simple con-
vergence for A >0 of the Z"(A) towards Z()) that:

Z_(x) — Z(x) uniformly on arbitrary compacts in
Rex > 0 and that Z(1) is holomorphic in Rex > 0.

As a consequence

arzny 4Pz, () _pr
darP P T 2n .

[Z(u) = Zn(u)]
(u — A)P-‘-l

du. (A4)

Taking as circuit of integration a circle of radius R
around A\, we have

| &Pz _dPz,(0) | bl

Z(u)~Z (u A5
which in Rex > 0 tends to zero for n — «,
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Therefore, the derivatives of Z () tend to the deriva-
tives of Z(1) in Rex>0.

Now, by using the Bernstein theorem!? which states
that the necessary and sufficient condition for a function
to be the Laplace transform of a positive measure with
support contained in (0,%) is to be C_ on the interval
[0, =] with derivatives having alternating signs, it re-
sults that Z(\) is actually the Laplace transform of a
positive measure du.

We now proceed to prove that the du, tend towards
du. It is clear that if the du, converge, it is towards
du because the inverse Laplace transform is unique up
to trivial measure zero changes.

Let us introduce the Fourier transforms of the posi-
tive distributions exp(—A7)du (7) (A real positive fixed):

Z,n+ip)=[_ exp(~ipT)exp(=AT)du,(7), p>0
(A6)
(the support of du, is 0, «).

The uniform convergence of Z (X + ip) on arbitrary
compacts in p, together with the bound (A3) implies the
convergence of this sequence viewed as tempered dis-
tributions (convergence in the sense of S’). By Fourier
transformation this gives the convergence of the
exp(— A7) du,(7) towards a limit distribution positive,
therefore a positive measure. This convergence, proved
for the test functions in S, can be extended to the con-
tinuous test functions, by using once again bound (A3).

We have used in the text a slightly generalized version
of this theorem. In fact the support of di, and du are
all contained in an interval (b, ©), where b can be nega-
tive and finite. The convergence of du _ to du is obtained
by an obvious change of variable to bring back the
support to (0, ).
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Notes added in proof: M. Froissart has found an ex-
plicit example showing that the conjecture of paragraph
II does not hold for the most general 3 X 3 matrix, How-
ever the conjecture seems to remain valid for the trace.

Theorem 3 obviously extends to nondiagonal elements
in the position representation. This allows us to prove
{I.3) in the boson case. Thanks to R. Balian for this
remark.
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Normal coordinates and quantization of nonlinear fields by

Feynman’s path integral*
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Institute of Physics, National Tsing Hua University, Hsin-Chu, Taiwan, Republic of China

(Received 12 May 1975)

A simple derivation for the quantization of nonlinear fields by Feynman’s path integral method is given in
terms of normal coordinates. The origins of the additional term obtained by DeWitt can be clearly seen in

this formalism.

I. INTRODUCTION

Feynman’s path integral® has been used for the quanti-
zation of nonlinear fields. The result differs from the
“usual Schrodinger equation” in that there is an addition-
nal term proportional to the total curvature R of the co-
ordinate space defined with a geometry given by the
kinetic energy tensor. In a curved space or in cases of
constraints where R is not a numerical constant, the
presence of this additional term would change the energy
spectrum of the whole system. This result has been
given by De Witt? and K. S. Cheng.® However, their de-
rivations are tedious and lengthy, and it seems amazing
that such a simple result is obtained by a miracuous
cancellation of complicated expressions. In this report
we present a simple derivation by using normal coordi-
nates which also exhibits clearly the geometrical origin
of this beautiful result.

In Sec. III we review the Hamiltonian path integral
method* and give a derivation for the manifestly covari-
ant formulation used. Discussion and conclusions follow
in Sec. 1V.

1. DERIVATION OF THE SCHRODINGER EQUATIONS

Let us consider a given mechanical system described
by a set of coordinates ¢ =(¢", ..., q"), with the
Lagrangian

L(‘.](t); 61(1‘))=§g”(q(f))ilifﬂ. (1)

Following Ref. 1, the quantization of the system is
achieved through the formula

gt +e€), t+e) :-}fexp(i/ﬁ)S(g(t +¢€), g{t))

X P(q(t), &) Vglg(®)) dq(t) (2)

where P(g(t+¢),t+€) and ¥(g(t), !) are, respectively,
wavefunctions at time 7+¢ and ¢, S(q(f+¢),¢(?) is the
classical action, that is,

S(g(t +€), ¢(t)) = minimum of [***L(g(t"), q(t"dt’
(3)

with the boundary conditions
Gt s =a®, qit") | seme =qlt +6). (4)

A is the normalization factor to be determined later
and g is the determinant of (g;;). The introduction of the
factor g(g(#)) guarantees that the integral is invariant
under any transformation of the generalized coordinates
q'(#). This property is very important. It enables us to
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use normal coordinates’ and simplify the whole calcula-
tion. In Sec. III we review the Hamiltonian path integral
method and give a derivation for it. From Eq. (2) we
can derive the Schrodinger equation by taking the limit
€~0. Now as € -0, the factor expl(i/mS(g(t+e€),q(t)]
oscillates very rapidly. Only the vicinity of the station-
ary point

q(t)=qlt +e) (5)

of S(g(¢ + €), g(#)) contributes to the integral in Eq. (2).
Let us now introduce the normal coordinates at ¢(f + €)
and expand in powers of

Agi) =q' () - q'(t + €. (6)
We have
8i;="04 t 5RO + - - (7

where the Riemann symbols R,;; are independent of &g,
To calculate the classical action S(g(¢ +¢), g(t)) we ob-
serve that the equations of motion for the paths g(¢")
which minimize the classical action S,

172
-nh+ '1°J: 8
q {ij}qq 0, (8)

are geodesics. Therefore the Lagrangian (1) is a con-
stant on the paths.® From Eq. (7) we easily obtain for
the classical action

S(g(t +€), q(t) = €4'qt

i i
:_ég_:_q + 0(ed). (9)

We also need the expansions

VElg) =1+ Ryag"ag" +- -, (10)
30 ua a0
Wa(t), =gt +e)) = Aq" 5 28 AT g+ (11)
where we have introduced the Rici tensor
R;; =Rl (12)
Equation (2) now becomes, after we perform the
Gaussian integration,
C] imire)N /2
Hate+ 0,0 +esba . Ty v e,
1 2 [y, %R
e = === ) +——¢ |+ - 13)
+lﬁ€[2 aqm <aqm> 6 d) (
where )
14
R=g"Ry,. (
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Comparing the coefficients up to order € in Eq. (13),
we obtain

A= (inhe)¥ /2 (15)
and

LAy B, B

7»;[5‘{———2—V lp——e'Rlp. (16)

Equation (16) is the “Schrodinger equation” using
Feynman’s path integration formulation of quantum
mechanics. Its covariant form is

p2e LB (g it) KR
hor="5Vg 3 \ 58 ag) "6 ¥ )

tll. HAMILTONIAN PATH INTEGRAL

In this section we derive the covariant formulation
(2) from the Hamiltonian path integral method. This
method is related to the following variational principle
in classical dynamics.

Let us consider a system described by N coordinates
d1, - -+, 4y and their canonical momenta p,,...,py. The
system has a Hamiltonian H(g, p). The variational prin-
ciple is as follows: Given that the coordinates of the sys-
tem at times ¢’ and t" are, respectively, g1, ...,qy and
q{', cees q; we consider the set of all phase-space tra-
jectories ¢(t), p(f) which satisfy the given boundary con-
ditions with no restrictions on the energy and the mo-
menta. The solution of Hamilton’s equations of motion
are the paths which makes

S:f w@"f‘?i-’f(q(t),p(t))) dt (18)
¢ i

.

an extremum. The quantization of the system is then
achieved by
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sat+,1+9= fexpl(5) [ 1ot0, - Hapn a

XYlq(t), t) dp(£) dq(t) |. (19)

For the nonlinear system (1) the Hamiltonian is given
by

H(g,p)=38" (@)p'p’ (20)

where g* is the inverse of £;;- Inserting this into Eq.
(19) and carrying through the integrations in p, we ob-
tain the desired Eq. (2). As the phase space volume
element is invariant under any canonical transforma-
tions, this formulation is manifestly covariant.

IV. DISCUSSION

(a) The introduction of normal coordinates makes the
whole calculation extremely simple. It also shows that
the phase factor has nothing to do with the additional
term. The term proportional to R comes from the geom-
etry of the curved space, i.e., the determinant g.

(b) In quantization of nonlinear relativistic fields such
as the gravitational field and non-Abelian gauge fields,
similar techniques should be taken into account.

(c) As the quantities involved are covariant scalars,
the quantization of nonlinear fields is unambiguous and
unique. It agrees with the “usual Schrodinger equation”
only when the curvature R vanishes.

*Supported by National Council of Science of the Republic of
China.
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This paper is an extension of results established by Jauch and Misra {Helv. Physica Acta 38, 30 (1965)]
concerning finite or countable sets of commuting self-adjoint operators. We have obtained the following

results: let A = {A;3 ics be a set of commuting self-adjoint operators on a separable Hilbert space /4 . Then
(i) for any I (possibly noncountable), there exists a spectral representation for A iff A” is maximal

Abelian. (ii) If 7 is finite or countable, N ;cs,ncIN [} (A7 ) is dense in A . As a corollary of a theorem of Maurin
[Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 7, 471 (1959)], this implies the existence of a

common complete set of generalized eigenvectors.

I. INTRODUCTION

In this paper, we intend to study the families of
strongly commuting selfadjoint operators on a separable
Hilbert space //. More precisely, we establish the com-
plete equivalence of two notions related to such a fam-
ily: completeness and existence of a spectral
representation.

The interest of such a work has been put forward by
Jauch and Misra!: The notion of completeness is of
prime importance in quantum mechanics and spectral
representation is of great interest in the study of fam-
ilies of commuting operators (see Ref. 1 for advantages
on Gelfand representation; note also that spectral rep-
resentations are related to the study of commutation
relations??).

In the second section, we set up the proper mathe-
matical framework for the problem and summarise
the results obtained mainly by Jauch and Misra. Ldy
the third part, we establish the complete equivalence
between the three notions. Then, we apply these re-
sults in the last part to prove the existence of a common
spectral decomposition.

1l. DEFINITIONS AND GENERALITIES

In the whole paper, we shall adopt the following
conventions: A is the o-algebra of Borel sets of R,
H is a separable Hilbert space, A; are self-adjoint
operators on // with spectral measure E;: B— E;(B),
Be /. We recall that A; and A; are said to be (strongly)
commuting if

VB, Byc A, E;(B))E;(B,)=E;(By)E;(B;).

Let A ={A;};c; be a family of commuting selfadjoint
operators (unless otherwise stated, the index set I may
be noncountable). The commutant 4’ of 4 is the set of
all bounded operators C on // such that CA; C A,C for all
A;. A" =(4") is called the von Neuman algebra gener-
ated by /4. One may prove® that for any bounded opera-
tor C

CA;CA,CSCE;(A)=E;{(A)C, VA=]a,bl(-»<a<bsw),

Thus, 4” is also the von Neuman algebra generated by
the set & of linear combinations of finite products of
operators E;(A). £ being a *-algebra, 47 coincides with
both the strong and weak closure of & in / (#/).%
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Let us define the various notions enumerated in the
introduction:

Definition 1. (Jauch®): We say that the family of self-
adjoint operators 4 is complete iff the von Neumann
algebra /” generated by 4/ is maximal Abelian in
L.

In the sequel, we shall need two different definitions
of a cyclic vector:

Definition 2a: g < 4/ is a cyclic vector for the von
Neuman algebra 4” itf 47 (g) ={Cg|C 4"} is dense in
H.

Definition 2b: g€ // is a cyclic vector for the set of
operators A iff £(g) is dense in 4/, i.e., if vectors such
that

N E;(A)g, 4;=]a;,b;], o finite subset of /
iCa

generate a dense subspace of /.

We recall that if 7 is any set of indices, the product
IR’ is the set of all the functions X: I—IR. The canoni-
cal projections 7; (i € I) are defined by m;(x) =x(f). Let
®,;e 3 be the smallest o-algebra such that 7; be mea-
surable for every i, i.e., the o-algebra generated by
the sets 1r;1(B) where ¢ runs over I and B over 8. We
call ® ;<3 the product v-algebra on R’. We may then
define a spectral representation by:

Definition 3: We say that we have a spectral represen-
tation of 4 ={A,};c, if there is a unitary isomorphism
U between £/ and L*(IR’, 1) where p is a measure on
®;c 18, such that if fe/)(4;), then

UA ) =1 (x) U (x).

Note that the only difference between the definition
of Jauch and Misra' and ours lies in the fact that they
use a measure defined on the o-algebra generated by
the “Borel rectangles” I1;-;B;. But they did not inves-
tigate the possibility of a noncountable set of operators.
One may verify that if I is finite or countable, the pro-
duct o-algebra and the one generated by the Borel rec-
tangles are both identical to the o-algebra of Borel
sets. Our definition is thus a natural generalisation
of theirs.

Let us now summarise the results obtained by
Jauch and others as well as some obvious facts.
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It is well known® that 4/” is maximal Abelian iff there
exists a cyclic vector for it. There is thus a complete
equivalence between the completeness of 4 ={74,};€ rand
the existence of a cyclic vector for 4”.

Since & C 4", it is trivial that if g €/ is eyclic for
A, it is also cyclic for 4”. The converse is also true:
A* being the closure of £ in the strong topology, &£ (g)
2A4”"(g) for every g<//. Thus, Definitions 2a and 2b
are fully equivalent.

Morever, Prugovecki®” has shown that, in the finite
case, 4 has a spectral representation iff it has a cyclic
vector. In the countable case, Jauch and Misra! have
proven that the completeness implies the existence of a
spectral representation, under a certain restrictive
assumption. We shall see that this assumption is un-
necessary. (It comes from the fact that they tacitly
assumed that if g is eyclic for 4, then g </)(4,;) for
every A;: Most of the time, this is false.)

In order to prove the complete equivalence between
the various notions, we shall now establish that there
is a spectral representation for 4 ={Ai}ie 1if A has a
cyclic vector, whatever is the cardinality of I.

lIl. EXISTENCE OF A SPECTRAL REPRESENTATION

We shall now prove the equivalence between the ex-
istences of a cyclic vector and of a spectral
representation,

Proposition 1: Suppose 4 has a eyclic vector. Then,
there is a spectral representation for 4.

In order to prove this proposition, we need the follow-
ing lemmas:

Lemma 1: Let (X,() be a measurable space and let
i be a finite measure on (', If /) is an algebra of sets
generating C, (l.e., if A,Be/), then ANBe/); it A
€/), then A°c/) and C is the smallest 0-algebra con-
taining ) then F={3{.;c,6,,1D; €} is dense in
L3(X, u).

Proof: Let De(, by a theorem due to Carathedory, &°
we know that for every €> 0, there exists a sequence of
sets D; c/) such that

DcUDy, D;ND,;=¢ ifi+j,
i=1 .

£s

1(D;) - p(D) <€.

-
"
-

One verifies that U7 ,pi=1im} ], 6,, is in F and that
16, ~ 6yusz,pll <e. Thus, 6, € F. Since simple functions
(i. e., linear combinations of characteristic functions of
measurable sets) are dense in L¥(X, y), 8 we have F

=L3(X, ).
Lemma 2: Let o be a finite subset of I:

(i) For every g<// with [|g]|=1, there is a normed
Borel measure u, on R* which extends the set
function

IT A <g, TT EdA)g>, Ar=lag, b).
iCa {CSa

(ii) The correspondence
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I By(adgh 8y o,
= t€a

defines a unitary isomorphism U, between a closed
subspace 4/, of #/ and L2(IR®, ;1,,).

Proof: (i) The collection of sets Il , A, is a semi-
algebra 7,, i.e., the intersection of any two sets in
Fa«isasetin j, and the complement of any set in 7,
is a finite disjoint union of sets in 7,. 7, is contained
in an algebra g o« Whose sets are finite disjoint unions
of sets in 7 ,%and which trivialy generates the o-alge-
bra of Borel sets of R*. All we have to check is that
Il 18 o-additive on 7,: u, will then be extendable in a
unique manner to o and then to the generated o-alge-
bra.®? But, if A;=A}=A} for i#k and A, =AU A
with A} N Af = ¢, we have

Ko ( 8! Af) =“a<-n A‘) +uu(n A;’)
iCa i€a i€eo

and if A{™ = A; for i#k, A™ =]a,, b{™] where a, is
the limit of the decreasing sequence 5™, then

Lo ( I Af"") —-0.
iI€a

We may then claim that u, is o-additive on 7,. 1

(ii) It is not difficult to verify that the function defined
on 7, by Icq &~ e o Ei(4;)g is additive: We may thus
define a linear transformation U, of a subspace of 4/
into LX(IR%, p,) by

n n

ey T Ey(ay, k)gh 236, 6 I A4z

k=1 iCo k=1 i€a '
where the products I, 4;,, may always be chosen
disjoint: all we need to check is U,(0)=0. But it is easy
to see that

I Ai,jﬂ I Af,2=¢$ Il E‘(A,'i)ﬂ E,(A,,2)=0
ica iCa t€Ea

ica
Then
| .n 2 n )
By 1 Baye]| =5 lewlue (2, )
rat  {€e R=1 {Ca
n
=|{23¢,0
k=1 k iI(::IaA"k

which assures that zero is sent into zero. U, is trivialy
isometric and by the use of Lemma 1, we may extend
it to a unitary isomorphism of 4/, to L(IR®, 1.,) where
H « is the closure of the subspace {3 ¢, [l;c o E;(4,,,)g}.

Let now 7, be the canonical projection

Te:RT—~ R
U] U}
X~ {X(hcq

We have the following lemma:

Lemma 3: There is a unique normed measure p on
(R, ®,c; B) such that p, =7,(1) Where all the p, are de-
fined as in Lemma 2 with the same g€ //. Moreover,
there is a isometric imbedding J, of L2(R®, 1,) in
LR, 1) defined by Jo(f) =foT,.

Proof: If BC o, we may define a projection 7,,: R®
— IR® which send {X(i)};ca on {X()};c,. These projec-
tions obey the equations
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TgaoTo =Ty if BC «,
MygoMga =Ty it yCRCa

and are such that if BC o, pg=7g,(1q), i-€.,
us(B) = (m5L(B)), B: any Borel set of R®

The collection of all (R®, u,) for all finites parts o of

I together with the mg, for BC o is thus a projective sys-
tem of measures. Using a theorem due to Kolmogorov,?
we may claim that there is a unique measure on
(R!,®,c ) such that u, =, (u) for every a. For

every linear combination f of characteristic functions of
disjoint sets in 7, put J,(f)=fom,:J, is trivialy linear
and isometric. It follows from Lemma 1 that we can
extend it to an isometric imbedding of LZ(IR“, Le) in
LYR', ).

Lemma 4: Let g be a cyclic vector for 4. Then,
2wy 11 E; (B4,8) g 22, 07t (H A,,k>

HS @, iC oy
defines a unitary isomorphism U between // and
L*(IR’, 1) where y is the measure occurring in
Lemma 3; verifies the equality

(UEI(A)f)(x) :53;1(A)(x)(Uf)(x) Va= ]a, b]-

Proof: Let f=7, ¢,Il;c o, E;(Ay,,)g: It is easy to check
that Uf =J,U,f for every « such that a CU,@,. U is thus
a linear isometric mapping defined on a dense subspace
of // (because g is cyclic) whose range is dense in
LYR, 1) (because of Lemma 1). One may then extend
U to a unitary isomorphism,

Lemma 5: Let F;(A) be the operator of multication by
7;1(A) in L2(R’, p): The unique extension of F; to 4 is the
spectral measure of the self-adjoint operator A defined
by
DAN={f= LR, w)| [ A2dIF () fI?< =},
(AiF)(x)=m(x) f(x).
Proof: F (A)=UE (A)U™ is trivialy o-additive on the
semialgebra of the A’s because E; has this property.
F, is thus extendable to A (Ref. 7) and it is not difficult
to verify that this extension is given by
(FyB) ) ) =5 -1 (%) F().

F, is thus the spectral measure of a selfadjoint operator
A’ of domain™

DA ={rf| [ 22l F M) FIP < }.

In order to prove that (A} f)(x)=7,(x)f(x), we must show
that for every f, g= /) (A}), we have

L™ &0 7@ ) du) = [ xdv,0)
with

v{(B)=(F (B)f,g = fl f(x) g(x) du(x).

But we need only to prove this for =g because one may
always write

JE=3 DR TR (=0T,

In this case, v, is a finite positive Borel measure on IR
and x being v, integrable, there exists a sequence of a
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simple functions converging to x» at the same time in
LYR, v,) and v, almost everywhere [i.e., 3 C= B with
v{(C)=0 and 3 1,5, S0 = in R~C].

Furthermore, the application from L'(IR, v,) to
L'(IRY, p) defined by

Z:ijBj—’Z Af’f’zér‘ﬁ(a )

is an isometry. Then, the image of the sequence of
simple functions will be a Cauchy sequence in LY{(IR", ).
This sequence converges almost everywhere to 7,1 f 1%
Indeed, if X< IR~7,(C),

X({YeR~C>7, )\jGBj(X
S000

f(B)

(1) = X(@)

X ] F)] 2= X@) | F(0) |2 =
and

v(C)=0 [ |f(®)]*dun(x)=0,

ey
i.e., 73(C) is the union of a u-negligeable set and of a
set on which f(x)=0. We have thus also

Z Xjéf_il(ﬂj) lflz_'”ilf]z

in LY(IR, v,) and this proves that
f ”i‘f|2d“:_[ Adv;.

Proof of Proposition 1: This proposition follows from
Lemmas 4 and 5:

Because F;=UE U™, we have trivially A,=UA U™,
both operators having the same domain.

We shall now prove the converse of Proposition 1:

Proposition 2: Suppose that there is a spectral rep-
resentation for 4. Then, 4 has a cyclic vector.

Proof: Let U: 4 — L*IR’, ) be a spectral representa-
tion: It is equivalent to prove that there is a cyclic vec-
tor for 4 =1{A},-, or for U(4)={A/},-, with A]=UA U

, that there is a g in L*(IR’, 1) such that the func-
tlons =y _1(Ai) 4 generate a dense subspace of
L¥IR', p).

Now, because // and thus L*IR/, i) are separable, u
must be finite or o-finite and if 4 is finite, Lemma 1
tells us that g(x)=1 is cyclic. Let then p be o-finite:
There is a covering of R’ by disjoint sets B_ of finite
measure. We may define a finite measure p’ on

Rz B by

1
kzz—

=1

w(Bn Br) .
u(B,)

g and p” being equivalent, there is a unitary isomor-
phism U’ between L3R/, 1) and L*(IR!, 1’) given by

U'(g)=gVdu/dn’

which is such that

U'(5’-il (B)g) - 6,'1.1 ¥:)) U(g)’

i.e., we just have a spectral representation for 4 with
finite measure u’, for which the function equal to one
is cyclic.
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We may summarise the previous results in the
theorem:

Theorem 1: Let 4 be any set of commuting self-ad-
joint operators; then the following assertions are
equivalent.

(i) 4 is complete (i.e., A" is maximal Abelian).
(ii) There is a cyclic vector for 4 (or for 4")

(iii) There is a spectral representation for 4.

IV. SPECTRAL DECOMPOSITION OF A COUNTABLE
SET OF OPERATORS

We shall now restrict ourselves to the case of a finite
or countable set of indices I. One may then use the
theorem of Prokhorovi®13 to prove that if U:4 — L} (R,
i) is a spectral representation then . is a Radon mea-
sure (we know yet that for finite or countable I, u is a
Borel measure, cf. Sec. II), i.e., u has the property '?;

K compact = u(K) <,

VBes ® A, m(B)= sup w(K).
iS1 KEB

K compact

As a corollary to this, we may claim that the set of all
functions f such that supp f is compact in the product
topology on R’ and f |, , is continuous is dense in
L¥*IR’, ) [or, equivalently, their equivalence classes
under the equality u a.e. is a dense subset of L3R/,
w)]. 2 But if f is such a function, for every p<IN and
iel, mf is also of compact support and continuous when
restricted to it. This of course implies that f is in
D(AP?) for every icI and p < IN. We have thus proven
that for any finite or countable complete set of operators
A=14 iep QLC (A?) is a dense subset of 4 [it con-
=g

tains the image by U~! of a dense subset of LR/, u1)].
But any finite or countable set of operators is contained
in a finite or coutable complete set of operators: There
are many ways to complete such a set by just one op-
erator. One of these is: Take any maximal Abelian von
Neuman algebra containing 4”. It may be generated by
a single operator with simple spectrum %5 and if you
add this operator to 4 you have a complete set. Thus,
the property we have obtained is independant of the
completeness:

Proposition 3: Let 4 ={A },z, be any finite or
countable set of commuting self-adjoint operators on a
separable Hilbert space //: N e, /) (A?%) is a dense sub-

PEIN

is a dense subspace of 4. (A proof of Proposition 3 for
the finite case was given in Ref. 14 and implicitly con-
tained in Ref, 2.)

We need to recall some facts about spectral decom-
position before going further; and first of all, the com-
plete spectral theorem 7:15;

Theovem 2 (von Neuman): Let 4 =1{A },=, be any set
of commuting selfadjoint operators on a separable
Hilbert space 4/. Then, there is

(i) a direct integral

H=[ AN @k
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which is a certain family of square integrable vector
fields

Asxi~u(\) e )

on a locally compact space A the scalar product in /-7
being

dim)q o)

o=l &

U N) 0, (A) dv(r),

(ii) a unitary map
Hou—~Fu=ucf
such that

(FAW),M)=A,0)a,0), 1sk<dimyQ),

where the function A‘ maps A onto the spectrum of the
operator A,.

We shall say that we have a spectral decomposition
of the family 4 or that we have a complete set of gen-
eralized eigenvectors of 4 if there is a nuclear space
& contained and dense in // (i.e., a dense subspace of
A which is nuclear when equipped with a certain locally
convex topology stronger than the one of 4/) such that the
F of Theorem 2 could be written

Voco, (F(p)k(x) = (77,,()\) =<(P, ek(x»’
with e, (A) = &’

1<k <dim//(n).

There is a very useful theorem concerning such a
spectral decomposition 15:16:17;

Theorem 3 (Maurin): Let the family of operators 4 be
finite or countable. If N, ,/)(A?) is dense in 4/, then 4
p=IN

has a spectral decomposition,

If we put together Proposition 3 and Theorem 3, we
obtain the following theorem:

Theorem 4: Let 4 be any finite or countable set of
commuting self-adjoint operators on a separable Hilbert
space //; then there is always a spectral decomposition

of 4.

V. CONCLUDING REMARKS

The main result of our paper concerning spectral
representation is to extend the work of Jauch and Misra.
Even in the countable case, we improve their results by
showing that there is no need for a supplementary as-
sumption.

In Sec. IV, we obtain Theorem 4 as a corollary of a
theorem of Maurin and of Proposition 3; note that this
proposition is interesting in itself for the study of com-
muting selfadjoint operators. As an example, consider
the following proposition:

P: A and B are symmetric operators defined on a
dense subspace D of /4 which is a common domain of es-
sential self-adjointness for every aA + bB (a,bc R).
Moreover, ABf = BAf for every fe D.

In a well-known counter example, Nelson'® has shown
that P is not a sufficient condition for the commutatively
of A and B; but Proposition 3 allows us to say that P is a
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necessary condition. Indeed, we may consider A and B
as operators of multiplication by x and y in L%(IR3, u)
where L is finite and it is not difficult to see that the
linear combinations of functions of compact support,
continuous when restricted to it, constitute a common
domain D of self-adjointness for every operator of
multiplication by ax + by (a,b = R), whose closure has
domain

{£| [ (ax+byP?| f(x,v, 2)|2dulx, v, 2, ) < =}

Moreover, it is trivial that xyf(x,y, 2) =yxf(x, v, 2) for
every fe D.
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Expansions for simple cubic lattice Green’s functions

S. Jorna

Physical Dynamics, Inc., La Jolla, California 92038
(Received 16 June 1975)

Expansions in terms of elementary functions are given for the diagonal elements of the simple cubic

Green’s function I(l;s)= (l/ﬂ’)fff [cos(Id,) cos(1d,) cos(ld;)/ (5+ ie—cosd; —cosd, —cosds)] dd dd,dé;
in the ranges 0 < s< 1, 1 < s< 3, and s> 3 for arbitrary /. The fast convergence of these expansions

renders them extremely useful for the rapid determination of numerical values for ReI(/;s5) and ImI(l;s) of
high accuracy. More slowly converging expansions are given for s =1 and s = 3. The expansion for s =1 is

particularly useful for large I.

1. GENERAL FORMULATION

Work on the scattering of waves by periodic discrete
lattices leads to the following integral for the simple
cubic lattice Green function':

Tpotrr
limjfj
0 JoJo /9

Cos(ll(Pi) COS(l2¢2) cos(l3¢3) d¢1d¢2 d¢3
§ +1i€ — (CoS}y + COSPy + COSP3) ’

1
I, 1, 1358) =75

1)
where the limiting process is required to avoid singu-
larities at s =1 and 3. Since

a":f: exp(- ax)dx, (2)
Eq. (1) reduces after integration over ¢,, ¢, and ¢; to
1 -]
I(ll,lz,ls,s)zms_'_—l £ J,1(x)J,2(x)J,3(x)
x expli(s +i€e)x]dx. (3)

In this paper we will confine attention to the evaluation
of I for the diagonal elements. The off-diagonal elements
can then be calculated from its known recurrence
relation.? With I=1,=10,=1[;, Eq. (3) becomes

I(l;s) =11 [o J,3(x) expli(s +ie)x]dx. (4)

Replacing J,%(x) with its Mellin—Barnes integral rep-
resentation, * we obtain

+1-1 ®
I(l;s)=22—7—nr [ Ji(x) explisx) dx
0

cai®
x I

c=i®

(- u)T(2u +20+1)
Tu+i+10)PTr(+20+1

) (i'x2)“”d“’

(5)
with s in the lower half plane and the usual restriction
on ¢ that the integration contour must separate the poles
of I'(~ p) from those of I'(2u + 27 +1). The integral over
x is a Gauss hypergeometric function so that for Eq. (5)
we may write

Il;s)= T—p)T@u+20+1)T(2u +37+1)

(23)-31 f cHio
zﬂisl ! Ccefoo

XF(u+3+3,u+3+1;1+1;s%)du.

[Cu+I+D)FT W + 2+ 1)(~ 459

(6)

This is the basic expression from which will be calcu-
lated expansions convergent for 0 ss <1, 1<s<3,
s>3, s=1, and s=3.
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2, EXPANSION FORs>3

A double series valid for s > 3 follows on replacing
F with its infinite series which converges absolutely for
s >3, interchanging integration and summation, and
evaluating the p-integral at the poles of I'(~ ). Thus,

@) j“
Hs5s) =5 i e

A
o ST s Y sy

M(-p)T(2u +20+1)T(2u +31+1)
[D(u+1+1) D + 21 + 1)(- 4s°)*

a0

Th+u+3+3)Tl+p+31+1)

=2n
% n§0 nlm+I)! s™dp
_(2s)¥ D> (2m +20)! (2m + 2n + 31)!
T s a2 ma min! [m+DIF m+2D)Tm+1)!
X (4s%)=mn, (7

which converges for s >3, The imaginary part of I is
zero for s >3 as will be evident from inspection of Eq.

.
3. EXPANSIONS FOR 0<s<1

The usual infinite series representation for the hyper-
geometric function in Eq. (6) diverges when 0 <s <1,
An expansion valid in this range is readily obtained from
its Mellin—Barnes integral representation [or from
Kummer’s relation linking F(... ;z) and F(... ;1/z)].
Substitution in Eq. (6) leads to

oo iw
J.. 1.
T~ w) D +1+8)T(E+2u +31+1)
Tp+l1+1)T(u+20+1)

221-1

10;s)= s(2sYinl/ T(2mi)?

I'(- 3t) exp(imy) explint/2)
T(zt +1 +1)s?P*g¢

X dudt ’

®)
where the integration paths have the usual restrictions
on the separation of poles and |larg(~1/s)| <#. The
required expansion in ascending powers of s is obtained
by first evaluating the residues in the ¢-integral at the
poles of T'(¢ +2u +31+1), i.e., at t==m—-2u-31-1
with m=0,1,2,..., and then in the p-integral at the
simple poles of I'(u +1+13), i.e., p==-n-I-%n
=0,1,..., 3(m +1)~ 1, and for even (m +1I) at the double
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poles p=—n~-3sm~3l-3%, n=0,1,...

expansions

(m +1) odd

. This yields the

Rel(l;s)=31"%/% (= 1)

SN T+l+3)Th-1+3)Tn+3)
XEQ Tn- [zm]+B+2)T-[zm]-a+32)

(2s)"
minld"’

©)
where a is the largest integer not exceeding 3, i.e.
=[3l], and B=[3( +1)], and
2

m=(

(m+1) /2«1

~5/2

ImI(l;s)=—37 (= 1)r=tm=1)/2

n=0

Lo+l +3) T +3) Tn—1+3) T(=n+3m +31)
min! Te—zm + 30 +1)

x (2s)7

4"
e 55

m=0 n=0
F(n+zm+2l+z)l"(n+2m+zl+2)l"(n+2m—gl+2)

mln! +10)! +3sm +30)! 4"
X [Ind - y(r +zm + 31 +2) = Yo + zm + 31 +3)
- P +3m—3l+3)
+dn +1+1) + Pl +zm + 3l + 1)+ +1)], (10)

with (m +1) even,

Equation (9) and (10) converge rapidly in the range
0<s <1 for s not too close to 1.
4. EXPANSIONS FOR 1<s<3

To treat the cases ! even and ! odd simultaneously,

we write Eq. (6) in the form

1

10659)= ity

« J“"” T(— p) T(2p + 21 +1) T(2u + 31 + 1) explimp)
e T(u+20+1)[T(u +1+1)] (4s%)®

XF(u+1+8+%, p+a+l+1;1+1; 1/s¥)du,
(11)
with the abbreviations introduced above: a =[], 8
=[3@{ +1)]. We now force an expansion in terms of
4(s®~5), whose magnitude is always less than unity for
1 <s <3, by applying the substitution
1 [+
T@)(1-2)"=

27

L@ +a)T(=p)(=2)dp. (12)

=foo
By the formula connecting F(... ;z) and F(...;1-2),
Eq. (11) becomes

ctiew

fc_m I'(-p)
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ctico
2
10;8) = T mtigmy Lm

2334

T +1+3)T(p +1+0a+1) 44 (= 5?8172
Tu+20+1)T(n+1+1)

I‘(—t)I‘(t+p.+l+B+2) T'(t-u - a)explint)
I'(—p-a)T@E+1+1)

X (1 - sZ)-t-u-l -B=1/2 dIJ. dt, (13)

with the familiar restrictions on ¢, i.e., ¢=0". Now
write (1 -z) in Eq. (12) as (1-8)[1- (b-2)/(b—1)] and
set =5 and z =s®. Substitution in Eq. (13) and shifting
i by { - o yields the triple integral

cl+t°° ct+ico
i (1/2m0)? f f
-{ao Cui o

T(u+t+ )T +t+1-a+3)T(w+{+1+1)T (= H)T(-

I(;s)

s¥H- 1)
7L

J’c#tao

ce=iw

B)

Tu+t+2-a+1)T(u+i+l-a+1)

><r‘(p+2t+u +l+B-a-3)T(-p)
T(u+t-a+1)TE+1+1)

2_g\*
x 4"(371—5—) dpdtdp;

explin(u +1)]
(14)

¢, must be chosen to maintain the pole separation in the
w-plane. The integration over p can be carried out if
we first apply Barnes’ first lemma and write?

Tp+t+l—a+)T(u+p+2+1+B—a+3)
T(p+t+2-a+1)
1
= 2m

Dg+t+l-a+3)T(g+p+2t+1+B—a+t3)
T(-t-p+1-B+3)T1+3)

XT{-g+ wWI{-g-p-2t+a-Pdg. (15)
Thus,
1 T(u+t+)D(p+t+1+1)T{p-q) T(—p) d
omi T +t+i-a+)T(p+i-a+1) H

T-g)T¢+1)TE+1+1)
TT-a+1)Tt+l-a+1)

JFot+1+1,t+1,~q;

t-a+1,t+l-a+1;1). (16)

The convergence criterion for this ;F, function (g > 2a)
is too restrictive for our purposes as we shall shortly
want to interchange summation and integration. There-
fore, we adopt a generalization of Dixon’s theorem (Ref.
5, Eq. 2.3.3,7)

rd)T(e)T(s)

Fala,b,cd,e51) = mo T O T(c +9)

(1mn
X Fod-a,e—a,s;s+b,s+c;1),
(16) into

which transforms the rhs of Eq.
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Tn-l-0)Tn—a)T(n+qg-2a)
Tn+q+t-20+1)T'n-2a)

M(~qg)T(+1)
T(-l-a)T(-a) =

a 8)1

when we substitute the (finite!) series for ;F,. The g¢-
integral formed by combining Eqs. (15) and (18) can be
carried out to yield

Tg+t+l-a+3)Tg+p+2+1+B-a+3)T(=q-p—2t+a-P)T(g+n—-20)T(-q)dg

f Tg+n+t-20+1)

 T-20)T(¢+l-a+3)Tp+2+1+8-a+3)TU+3)T(=p—t+1-B+3)

Tn+t-2a+1)I(t+2l—a +1)

X Fo(t+1,p+ 2+l +B-a+3,t+l-a+3;t+20—a+1,t+n-20+1;1). (19)

The convergence criterion for this ;F, function (p +2¢-#n + o +5<0) is too restrictive for our purpose and so we

apply the generalized Dixon theorem to obtain the function

Fo2l-a,n—2a,-p-2+n-a-Bn+l-20+3, ~p—t+n-20-B+I0+3;1), (20)

whose series representation terminates because n < a.
Substituting this series for ;F,, we find that Eq. (14)
reduces to

SZB-I(_ 1)1+m

I ;s) 5

2g=p m~l-a-Dn-a-1)!
% Z)7rz!n!(n—20{—1)!(-l—4:)1—1)!(—01—1)!

n={ m=

m+2l-a-WMm+n-2a~1)!
r(m+n+l—2a+%)(2l—a—1)!

X (1/2mi)? f f
Re p=0" Ret=6+0"

T(t+35)T(p+ 2+ 5)T(=p -2t + m+n+ YT(=p)
T(t+a+D(-p—t+m+n+y+i)4t

X T~ {+ B) explint)[(s*~ 5)/4F¥ dp di. (21)

The integration over p is routine. Adding the residues
at the poles p=p and p — 2{ + m +un +7y we obtain (p is
henceforth an integer)

SZB-I(_I)I & 2gen ©
1;s)= 27 nZ=(\§ »g Q

n=l-a-Vln-a=-1)1m+2-a-1)1{m+n-2a-1)!
mnlp! -2 -1)' (~l-a-1)!1{-a-1)!

(= D’ 1l(s* - 5)/4)

X
Tmtn+y+3)2~a-1)

r (T4 Ty) (22)

where

T,=1/(2mi)
Ret=8+0"

2B=1_1y8 & (2a-) =
LA >

T+ TRt +p+5)T(=2-p+m+n+9)T(=1t+p)
T¢+a+1)T(=i-p+m+n+y+z)4

X exp(int) dt (23)
and

T,=(1/2n)[(s2 = 5)/4]""™" T(p+m+n+y+3)

< T{#+3) T —p-—m-—n-yY)T{(-t+8)
RetuBad™ Tt+a+1)T({E-p+3)4"

x exp(iwt) [(s® - 5)/4] % dt. (24)

In Ty we must sum over the residues of poles in the
positive half-plane such that > g8+ 0™ while in T, the
poles for £ <8+ 0 are to be taken. It is convenient to
introduce the abbreviations, in addition to the a and g8
of Eq. (9),

y=1-20, 6=[zm+n-p+y+1)], e=[zm+n-p+v)],
p=z@+m+n+y+1)], v=[3@+m+n+y)], (25
so that the required poles of I'(- 2t -p+m +n +7v)
XT(-t+p) in Ty are
double poles at t=¢q, g=5,...,
simple poles at t=qg +3, g=§, ...,
and the required poles of I'(2t—p~m -n—1v) in T, are
simple poles at t=—-¢—3, g=-min(3,u),...,
. (286)

simple poles at t=—¢, g=-min(B-1,v),...

Adding the contributions from these poles, and sep-
arating the result into its real and imaginary parts, we
finally obtain that

m=-l-ao-NDN'u-a-DIm+2dA-o-1)m+n-2a-1)!

ReI(l,S):— an ~ -1
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Tg+2)T(2q+p+3) Tg+p—m—=n—-y+3)

x(qEB (1) @-B'llg+a)l (2g+p—m—-n—)T4°

[(s*-5)/a)

X[plg+2)+20(2¢ +p+5)+dg+p-m—-n—-y+5) -Pg+a+1)—Ind - hlg-B+1) - 20(2g +p-m—-n—-y +1)]

Th+m+un+y+3) TP +q+3) (g+8-1)!

- 7![(82 - 5)/4]m+n+1 i‘/

g==min(8=1,»)

(_ I)Pwommw

ImiI( ;s)

. )
_ s I(_ 1)5 o (2a-n

(—g+a)lp+2g+m+n+y)! Tlg+3)

£(s? - 5)/4]2«), @7

m=l-a-Dln-a-D)m+2-a-1)1{m+n—-20-1)!

47 np m=0

(Mmensr=1) (men-pry=1)

mnln-20-N(~l-a-1)!(~a

-NI@l-a-DITm+tn+y+3)

(- 1y gl p +2q +3)! [(s*-5)/4F

X (én’z

=0 a=8

PIT(g+a+3)(~g—p+tm+n+y—11(p +2g—m-n-y+1)IT{g- B +3)4°

—ﬂi 2( 1ypres I‘(q+%)l"(p+24+§)l"(p+q—m-—n—y—l—%)

$=0 ¢=B pllg-Mg+a)l(p+2¢g-m-n-"4q

+ 2[(s? _5)/4]":*""2} b (-

1 )P"m’rr"‘l*a

T(p+m+n+ty+3)Tg-a+3dg+p)T{g+h+3)

[(s2—5)/4P

#£=0 ¢=-min{B,u)

The convention to be used in the summation is that a
sum is zero if the upper summation index is smaller
than the lower index.

5. EXPANSION FORs=1

To obtain an expansion valid at the singular point s
=1 we go back to Eq. (21). The p-integral with p —-p

1 Mw'2t+m+n+)’)F(p)I‘(_p-}-zt.;.%)
21 ) e T(p-t+m+n+r+s:)

X exp(— imp) dp (29)

is just the Gauss hypergeometric function

_Tm+n+y+3)T2t+3)
YTt mtntr+ 1)

X Fim+n+v+3%,2t+ 5 t+m+n+ v+ 1;1)exp(-2nit),

(30)

which sums to

Tn+n+y-HTQ+HT(-0

TG T (—trmrat v+ L) 2mit).

exp(- (31)

—

plat(p+2g+m+nty+1)!

se{(57 - 5)/ 4P

(28)

The ¢-integral is

T(— ¢+ BTt + HT(+ HT(= 1)
Retco LUt a+DT(=t+m+nty+s )

exp(—int) dt,
(32)

which by the general theorem for ,F,(Z) given by Slater®
(Sec. 4.6.2) integrates to

(- $)T(8+ HT()
Tla+3)T(m+n+7+2)

@(“ g

X 3F2(5+ %’:,

I(z)T(8+ 1TE)
Ta+DT(m+n+r+d)

at+i i, mtn+y+ 1)

-(1+9)

X JFy(B+1,4, —a+%;%,m+n+y+%;1>). (33)

The series for these  F, functions will be seen to con-
verge as ¢ ™™"/2, where ¢ is the summation integer.
This convergence which is quite slow can be sub-
stantially improved by utilizing the generalized Dixon’s
theorem (cf. Ref. 5, Eq. 2.3.3.77) to transform the
+F, functions in Eq. (33). Substituting the result into
Eq. (21), we then obtain

n=0 m=0

Rel(l; 1) }

ImI(l;1)/i) avm

minl(n-2a-1)1(~

_(-1¥ i; Z‘Zv—\:" m-l-a-Nm-a-Nm+2l-a-1)1m+n-2a-INTm+n+3)
l-a-D{(-a-11(2] -

a-1)!

X(_F(%)st(—B+%,m+n+ Y-Btz,mIn+imrntimin-—at+ti;1)
T(a+%)r(m+n+i)r(m+n—a+ i)

I‘(4)3F( B+i,mtntvy— B+2,m+n+2,m+n+4,m+n a+4,1)>

Ta+DTm+n+3)T(m+n-a+3)
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The series for jF,(— 8+ 3, °+°) in Eq. (34) will be
seen to converge as ¢g*-*/%, while that for F,(- 8+1%,
«++) converges as g°'/*, Equation (34) is thus par-
ticularly useful for large values of I.

For =0, we regain the well-known result given by

Katsura ef al.,' i.e.,
Rel(0;1) 1 (r$Pr L[ @) ]2 (35)
mi0:;1)/i  ° [T ** [TGF

after substitution of the known sums for the ;F, functions
in Eq. (33).
6. EXPANSIONS FORs=3

Again starting from Eq. (21), we obtain for the p-
integral

o 20-n

D(p+2t+3)T(=p=-2t+m+nt VNT(=p) ,

1
— 36
21ri_‘ (-p-t+m+n+3) (36)
_ Tm+n+y+3HTR+1)
T(t+m+nt+tr+1)
X F2t+z,m+n+y+ittm+nty+1;-1), (37

which by analytic continuation transforms to

Tim+n+y+3)TQ2¢+3)

9-m-n-r-1/2
T(t+m+n+y+1)

X Fy m+n+y+s, —ttmtnty+it+m+ntv+1;3).

(38)
The full expression for I(1;3) follows by substitution
into Eq. (21) so that

o (n=l-a-Mn-a-Nm+2-a-1Yim+n-2a-1)!

oy 328-1(_ 1)8
I(l’B)_T

n=0 m=0 P=0

T+ 3)D2¢+ 3)T(=t+p+ m+n+ v+ 3)D(—t+ B) exp(int)

2D Em'n‘p!(n 2a-Dl(-i-a-Dl—ca-1D12<a-1!

gl Dptmtnt y23) opmpraso
21 Tm+n+l-2a+3) R

o TG+ a+DT(—t+m+n+y+3)T(E+p+m+n+y+ D4

dt. (39)

The only poles in the positive £ half-plane are at {=¢ + 8, and summing the residues there we obtain the expansion

328-1

103)= - gwrgeiy

a 2a-n

X253 20 2

m-l-a-MWNhr-a-Nm+2-a-Dm+n-2a-T{p+m+n+r+3)

n=0 me0 po mInlpln-2a -~ ~a-D!(-a-1)

((=1Y

T(g+ B+ 3)T(2¢+2B8+3)T(g+ B—m—-n—v+3)

12l —a-NT(m+n+ti-2a+1)

2"’"’"qoq'(q+l'1"(q+3 p-m-n—-v+3)g+B+p+tm+nt+ 4’

where inspection shows that the series in ¢ converges
as ¢ "1/2 The imaginary part is, of course, zero for
s=3.

7. CONCLUSIONS

We have obtained expansions for the diagonal elements
of the cubic lattice Green function I({;s) for the ranges
0<s<1[Egs. (9) and (10)], 1<s<3 [Egs. (27) and (28)],
and at the singular points s=1 (Eq. 34) and s=3 (Eq.
40) for arbitrary I. Eqs. (9) and (10), (27) and (28) con-
verge rapidly through most of the range in s, so that
typically ten terms in the g-summation are sufficient to
provide ten digit accuracy. The expansion at s=1 con-
verges more slowly for small values of [, but becomes
extremely useful for large I. The expansion for s=3 is
perhaps least useful as it contains a series in ¢ which
only falls off as ¢g™!/2 in the worst case (m=n=0). Gen-
eralized expansions around s=1 and s =3 would there-
fore be extremely useful. Work towards this end is cur-
rently in progress. It should also be noted that the ex-
pansions given here avoid the use of the recondite

2337 J. Math. Phys., Vol. 16, No. 11, November 1975

(40)

Kampé de Feriet functions which are central to the re-
cent work of Abe and Katsura,® and are therefore more
directly amenable to programming on a computer. The
computing time necessary to provide any given accuracy
is readily determined from our convergent expansions.
For example, on a CDC-7600 I{I;s) accurate to twelve
significant figures is obtained for s=0.4 and /=4 in
0.02 seconds from Egs. (9) and (10), and for s =2 and
1=4in 0.1 seconds from Eqs. (27) and (28). Comparison
values for selected cases were obtained from Joyce’ for
1=0, and by direct evaluation of the integral in Eq. (4)
for 1+#0. It now becomes quite feasible, therefore, to
construct rapidly extensive tables of the cubic lattice
Green functions from their recurrence relations and our
expressions.
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